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Preface

Although there is a very large literature on theoretical electromagnetism,
there is much less on experimental measurements, particularly for the skin
effect at low frequencies. The author has found that of several recent papers
he has written in this field, the one which received the most attention
concerned experimental measurements of the skin effect at low frequencies
[1,7]. For this reason, this monograph emphasizes the experimental
measurements and results obtained for the skin effect, particularly at low
frequencies. For a review of the subject, the article
https://en.wikipedia.org/wiki/Skin_effect in Wikipedia is suggested. [2].
Presumably, in the case of AI, it must employ someone, perhaps like
CERN, to conduct the experiments necessary to validate its conclusions.

However, to begin with, we need to establish the theoretical background
necessary to understand the results obtained from measurements. The book
therefore begins with an introductory Chapter 1 on the derivation of the
equations of time-dependent electromagnetic disturbances, in which we
compare James Clerk Maxwell's original approach [3] with the present-day
approach. The remaining chapters mainly concern the solution of Maxwell's
equations in the frequency domain.

The importance of Maxwell's discoveries has been widely recognized.
The following quote from the introductory chapter may serve to encourage
the reader. As Roger Penrose points out, “Maxwell's equations were the first
of the relativistic equations” and “the theory of electromagnetism plays an
important part in quantum theory, providing the archetypical field of
quantum field theory” [4]. Also, Albert Einstein, stressed “The Special
Theory of relativity has crystallized out from the Maxwell-Lorentz theory

https://en.wikipedia.org/wiki/Skin_effect


of electromagnetic phenomena”, “which in no way opposes the theory of
relativity” [5].

The book does not necessarily assume that the reader has a detailed
knowledge of electromagnetism. It may therefore also be of interest to those
involved in other disciplines where electromagnetism is not a major subject
but includes fairly advanced mathematics at a level, say, of Arfken [6].
Other disciplines include geophysics, mechanical engineering, and mining
engineering, where electromagnetic techniques are widely employed.
Although there are other textbooks and papers directed towards this goal,
the approach employed here follows Maxwell's original analysis [3], which
is not usually the case. This approach also does not require a detailed
knowledge of electrical engineering, but it does lead to the fundamental
equations of electromagnetism; the diffusion equations in conductors and
the wave equations in non-conductors, leading to the electromagnetic
theory of light and the pressure exerted by electromagnetic radiation.

Chapter 2 introduces Maxwell's four vector equations (all based on
experimental measurements) with solutions, initially for free space, leading
to the wave equations for electric and magnetic fields, travelling waves, and
the relationship between the electric and magnetic fields, plane waves with
two components, and the constants of propagation for free space. This is
followed by a section on the solutions of Maxwell's equations for lossy
materials. This again leads to wave equations but with additional diffusion
terms - the Helmholtz Wave Equations or Equations of Telegraphy, details
of the propagation constants in lossy materials, complex refractive index,
optical constants, Debye equations, dissipation factor, and circuit
parameters.

Chapter 3 concerns steady state and time-dependent power dissipation,
including power dissipation in circuits, power dissipation in the time and
frequency domain, power factor, instantaneous power, oscillatory power
(important in inductive circuits), power flow, poynting theorem,
superconductivity, complex poynting theorem, relaxation effect, impedance,
dissipation in circuits. This chapter and Chapter 2 also briefly discuss
superconductors.

Chapter 4 is an Introductory chapter to the skin effect, including
approximate methods of analysis for various conductor geometries. It
begins with a general explanation about the decrease of the electromagnetic
fields with depth as the frequency increases, the use of high conductivity



films on conductors, hollow conductors at low frequencies, and high
permeability materials. This chapter also includes a brief history of the skin
effect, which was very important to the pioneers of radio communications.
In recent times, the large development of wind turbines and the extension of
the electrical transmission lines to the many remote sites have led to
increased energy losses due to the low-frequency skin effect.

This is followed by chapters covering more detailed theory and
experimental measurements of the skin effect in solid and hollow
cylindrical tube conductors. Copper or aluminium tube busbars are used in
electricity substations and have many advantages over solid copper busbars.
These busbars must withstand very high current and voltage switching
transients. The final chapter describes methods of measuring the skin effect
over a wide range of frequencies. In addition to the dedicated techniques
used to measure L, C, and R, a Gain Phase-Meter (GPM) technique was
also employed here to measure the amplitude and phase to determine the
impedance as a function of frequency. This was particularly useful for the
low-frequency skin effect, where the resistance may be less than a
milliohm.

The book finishes with an Appendix containing Bessel's modified
equation, Kelvin functions, properties of Bessel functions, power integral
and orthogonality, and finally, a reference section and index.



Figure P.1 Frequency dependance of theoretical impedance and
inductance for a hollow copper tube showing skin
effect. In this example the tube length was 3.04 m with
inner radius 4.3 mm and outer radius 5 mm. See
Chapter 11, (11.1) for further details.



Figure P.2: Iron wire, diameter 2 mm, formed into a rectangular
loop with mean gap width 18 mm, length 19.2 cm and
current I = 0.6 Arms. Measurements performed using
a Gain Phase-Meter (GPM) method [36] with function
generator HP3325A and low- frequency power
amplifier for frequency range 10 Hz to 1 kHz and high-
frequency power amplifier for 1 kHz to 1 MHz.
Internal inductance (Li), resistance (R) and reactance
(Xi). See pp. 101 and 117.
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Chapter 1
Maxwell's general equations of electromagnetic disturbances

The theory of the propagation of electromagnetic disturbances in the time domain provides the fundamental
explanation of how electrical energy is transmitted both for the steady state dc case and steady state sinusoidal
transmission. This is not only applicable to modern communication systems in electronic engineering and
physics but also in other disciplines including geophysics and mechanical engineering. In this chapter we firstly
review the basic theory based on Maxwell's equations and then apply it to examples including diffusion in
conductors and ferromagnetic conductors.

1.1 Introduction

This chapter concerns the derivation and equations of time dependent electromagnetic disturbances in which we
compare James Clerk Maxwell's original approach with the present day approach. In the following chapters we
consider Maxwell's equations reduced to the well known four vector calculus equations first determined by
Oliver Heaviside in 1884 and recently reviewed by D.P. Hampshire [8].

However, the chapter does not necessarily assume that the reader has a detailed knowledge of
electromagnetism. It serves to introduce important topics and equations in electromagnetism. It may therefore be
of interest to those involved in other disciplines where electromagnetism is not their major subject. This may
include disciplines, such as geophysics, mechanical and mining engineering. Although there are other textbooks
and papers directed towards this goal, the approach employed here follows Maxwell's original analysis
[3,17,21], which is not usually the case. Physicists and electrical engineers may also find the vector potential
method employed by Maxwell of interest. Using this approach in his theory of light, he revealed the
fundamental wave equations and diffusion equations of electromagnetism.

The importance of Maxwell's discoveries has been widely recognized. As Roger Penrose points out,
‘Maxwell's equations were the first of the relativistic equations’ and ‘the theory of electromagnetism plays an
important part in quantum theory, providing the archetypical field of quantum field theory’, [4]. Also, as Albert
Einstein stressed, ‘The Special Theory of relativity has crystallized out from the Maxwell–Lorentz theory of
electromagnetic phenomena’, ‘which in no way opposes the theory of relativity.’ [5].

We initially review Maxwell's Chapter 20 in Maxwell's Treatise on Electricity and Magnetism [3,17,21].
Although this chapter is entitled Electromagnetic Theory of Light, Maxwell first derived the general equations
for an electromagnetic disturbance through any uniform medium at rest. For the case of non-conductors,
Maxwell produced the wave equations, calculated the speed of light, which led to the understanding that light
arises from electromagnetic waves. In addition, he calculated the pressure and momentum of light, which led to
the present notion of photons and wave mechanics. For conductors, the solutions lead to diffusion equations, the
penetration of electromagnetic waves, and the important topic of the Skin Effect. These have applications in
many areas of science and engineering.

This is followed by the alternative analysis, which uses the Lorenz gauge to derive the wave equations and
diffusion equation with sources. This leads to the calculation of the impedance of a conductor in the time domain
in terms of vector potentials.



1.2 Basics of the transient transmission of electrical energy

Lightning is a large electrical transient that involves the rapid discharge of clouds to the earth (ground) or
between clouds. The cloud (Cumulonimbus) is initially charged by a complex process of molecular friction.
Eventually, the cloud's electrical potential to ground reaches the breakdown strength of the surrounding air
(about 30 kV/cm), and the cloud discharges its electricity to ground with a bang (thunder). Although the details
of the complete process are very complex, involving most of the known Physics and maybe more, lightning
provides a dramatic example of transient electrical phenomena [9].

Initially, it is worth considering a simpler case of how an electrical disturbance travels along conducting
wires when power is switched on to a load such as a light bulb. The bulb appears to light immediately when the
switch is turned on, even though it may be some distance from the power source. But the drift velocity of
electrons for 1 amp through, say, a section 1mm × 1mm of copper wire is only about 26 cm/hr or 2.6 m per 10
hours – the pace of a very tired snail. It would take a day or more for the light to come on! Hence this cannot be
the only explanation since we know that the current can easily be measured flowing through the bulb or
anywhere along the wire the instant that the light is switched on. One explanation of how the current can travel
much faster than the drift current is that the electrons in the conductor only move about a mean position as the
wave passes, rather like the ‘Mexican Wave’ at a football match where fans raise their arms in succession and a
wave of arms travels around the stadium [10,11].

The full theoretical explanation turns out to be quite complex, involving the coupling of the electric and
magnetic fields in the conductor and in the surrounding space. The EM field and displacement current outside
the wire travel at nearly the speed of light, leading to radiation of the E and H fields. This is commonly detected
by radios when the light is switched on or lightning strikes.

In the theory based on Maxwell's equations, only macroscopic effects are considered, where the electric and
magnetic fields are averaged over a microscopic region [12] or averaged over quantum properties. In this case,
the nearly instant effect is explained as due to an electromagnetic wave producing the displacement current in
the insulation outside the conductors, and the wave travels at nearly the speed of light to the load driving current
through the bulb. The current that penetrates the conductors, however, obeys a diffusion equation. If the wave is
sinusoidal or pulsed, the current may not have had time to penetrate to the centre of the conductor before the
wave reverses or the pulse falls. This leads to the notion of the Skin Effect, which concerns the finite depth of
penetration of time-dependent currents into a conductor. For copper at 50 Hz, the calculated skin depth δ=9.28
mm and the phase velocity u=2.9 m/s. At 1 MHz δ=65.6 μm and u=412 m/s. Although this is much less than the
speed of light, the current only has to diffuse to half the diameter of the conductor rather than the full length of
the cable [13].

1.2.1 Electromagnetic disturbances-frequency and time domains
The topic of electromagnetic disturbances is mostly considered from two general perspectives: disturbances as a
function of frequency (frequency domain electromagnetics) and disturbances as a function of time (time domain
electromagnetics). A large proportion of the literature on this subject considers the frequency domain. This is
mainly because the history of the subject is dominated by electromagnetic communications in the frequency
domain. This is also convenient for the mathematical analysis since it leads to simpler equations with analytical
solutions. However, the theory of disturbances in the time domain provides the fundamental explanation of how
electrical energy is transmitted both for the steady-state dc case and steady-state sinusoidal transmission.

In addition, disturbances in the time domain are of great technological importance because of the rapid
development in digital electronics and digital communications. This aspect of transient electromagnetics
includes natural phenomena such as lightning and applications in geophysics to gain information on the
electrical resistivity of subsurfaces [14]. There are also many common examples of transient behaviour such as
that which occurs when switching lights on or off, and in dc systems such as switching on vehicles, transient
arcing in railway systems [15] or any electrical appliance.

Generally, the theory is approached in two ways: (1) EM field theory that solves Maxwell's equations under
particular boundary conditions. (2) Transmission line theory that considers the conductors as elements of
inductance, capacitance and resistance. The first method essentially considers the physics of the problem and is
more suitable for complex boundary conditions and numerical analysis. The second method has the advantage
that it can be taught as an extension of circuit theory and is widely used in electrical engineering courses. In the



(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

case of circuits with only linear inductance, capacitance and resistance, a second-order linear differential
equation can be established and the circuit solved analytically using an integrating factor or by using Laplace
Transforms. If it is necessary to take into account frequency dependence of the inductance, capacitance,
resistance or skin effect in the conductors, then the problem becomes more challenging, and numerical methods
are frequently used [108,109].

1.3 Theory of the propagation of electromagnetic disturbances – Maxwell's
approach

In Maxwell's analysis vector symbols are represented by Euler Fraktur fonts [16] (see Appendix section 1.10) –
mainly because as he said ‘the number of different vectors being so great that Hamilton's favourite symbols
would have been exhausted at once’ (Art. 618).* Although these look rather elegant compared to present-day
fonts, they make appreciating the equations rather difficult. I have therefore presented the equivalent equations
in SI form alongside Maxwell's equations.

As mentioned, the theory assumes that the electric and magnetic fields are averaged over a microscopic
region of the medium [12]. The total current flowing through the medium at rest due to an electromagnetic
disturbance is given by the sum of the conduction current and the displacement current.

Maxwell : C = (C +
1

4π
K

∂

∂t
)E, SI : J = (σ + ε

∂

∂t
)E

total current density ℭ and J, specific conductivity C and σ, inductive capacity K and permittivity ε = εoεr,
electric field 𝔈 and E. The notion of an additional current due to the time dependent fields, the displacement
current was a significant contribution which allowed Maxwell to develop his theory of light, Maxwell (Art.
610),[18,19].

If the conductor is moving we need to add a third electric field due to the conductor moving through the
magnetic field which is Em = u × B.

E = G× B − ∇Ψ −
∂U

∂t
, E = u × B − ∇Ψ −

∂A

∂t

where u = 𝔊 is the velocity of the conductor Ψ is a scalar electric potential and U and A are vector potentials
defined by B = ∇ × A. Thus, the total electric field in the time domain is the sum of the motional electric field,
the gradient of the electric potential and the time variation of the magnetic vector potential, [3] Art. 599.

If there is no motion in the medium the electromotive intensity is

E = −∇Ψ −
∂U

∂t
, E = −∇Ψ −

∂A

∂t

This equation for the electric field is very important, and a proof is given in Section 9.1. Substituting this
into (1.1) gives

C = −(C +
1

4π
K

∂

∂t
)(∇Ψ +

∂U

∂t
), J = −(σ + ε

∂

∂t
)(∇Ψ +

∂A

∂t
)

But Maxwell uses a relation for the current density given in Art. 616

4πμ1C = ∇2
U + ∇JM , μJ = −∇2

A + ∇∇.(A)

where μ1 = μ/(4π) and μ = μoμr. The proof of (1.5) is given in Section 9.3. Note that Maxwell used a negative
Laplacian (−∇2) in determining (1.5), which gives rise to a positive value for ∇2𝔘. We have used the
conventional positive value which gives a negative value for ∇2A in (1.5). Maxwell defined JM as



(1.6)

(1.7)

(1.8)

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)

where F, G, H and Ax, Ay, Az are the vector potential components in the x, y and z directions, respectively. In
this equation we have given Maxwell's ‘J’ a suffix M to distinguish it from the SI unit for current density J.

Combining (1.4) and (1.5) gives

Expanding this equation yields three equations

These are Maxwell's ‘general equations of electromagnetic disturbances’, which he then differentiated with
respect to x, y and z and summed to obtain, after some work,

Then

(σ + ε
∂

∂t
)∇. [ ∂A

∂t
+ ∇Ψ]=0

Substituting E from (1.3) gives

(σ + ε
∂

∂t
)∇.( − E)=0

Using Maxwell's first equation

(σ + ε
∂

∂t
)(−ρv/ε)=0

Hence

∂ρv
∂t

+
σρv

ε
=0

which is the continuity equation for an open surface.

1.3.1 Conductors
If the medium is a conductor with very small displacement current compared with the conduction current then
Maxwell in Art. 783 put ∇Ψ = ∇ JM=0 so that (1.8) becomes

JM = ∂F
∂x

+ ∂G
∂y

+ ∂H
∂z

or JM = ∂Ax

∂x
+

∂Ay

∂y
+ ∂Az

∂z
= ∇. A

μ1 (4πC + K ∂
∂t ) (

∂U
∂t + ∇Ψ) + ∇2

U + ∇JM=0,

μ (σ + ε ∂
∂t ) (

dA

∂t + ∇Ψ) − ∇2
A + ∇(∇. A)=0

μ1 (4πC + K ∂
∂t
) ( ∂F

∂t
+ ∂Ψ

∂x
) + ∇2F + ∂JM

∂x
=0

μ1 (4πC + K ∂
∂t )(

∂G
∂t + ∂Ψ

∂y )+ ∇2G + ∂JM
∂y =0

μ1 (4πC + K ∂
∂t
) ( ∂H

∂t
+ ∂Ψ

∂z
) + ∇2H + ∂JM

∂z
=0

μ1 (4πC + K ∂
∂t )(

∂JM
∂t − ∇2Ψ)=0

μ (σ + ε ∂
∂t )(

∂(∇.A)
∂t + ∇2Ψ)=0

μ14πC ∂U
∂t

+ ∇2U=0,

∇2A − μσ dA

∂t =0



(1.15)

(1.16)

(1.17)

(1.18)

These are source free homogeneous diffusion equations with known solutions [3,20,23].

1.3.2 Non-conductors

Maxwell argued that for ‘a non-conductor, C=0 and ∇2Ψ which is proportional to the volume density of free
electricity, is independent of t. Hence JM must be a linear function of t or a constant or zero’. Hence for periodic
disturbances JM and Ψ were set to zero. Equation (1.8), then becomes

The condition in which JM or ∇. A=0 is referred to as the Coulomb gauge [22]. An alternative analysis that
uses the Lorenz gauge is given in a following section.

Equation (1.10) is a source-free homogeneous wave equation for the vector potential components F, G and H
in the x, y and z directions, respectively. The positive sign arises because Maxwell used −∇2. Maxwell then
proceeded to show that the velocity of the waves was close to the measured velocity of light suggestings that
light was an electromagnetic disturbance. Equation (1.16) gives the same equations in SI form where Ax, Ay and
Az are the components of the vector potential A

1.4 Electromagnetic waves and light

The equation which represents a periodic wave travelling in the + z-direction is given by

∂ 2f

∂z2
=(1/u2)

∂ 2f

∂t2

where f is the amplitude and u the velocity of a fixed point on the wave, that is, the phase velocity. Comparing
(1.17) with (1.16), then these equations represent periodic waves travelling at a phase velocity

uo = √ 1

μoεo

In terms of the classical dielectric and magnetic constants where μ1=1 then v=1/√K or using electrostatic units
K=1, v=1/√μ, Maxwell found that uo was close to the value c of the velocity of light measured at that time†.
Subsequent measurements have confirmed the theory that light consists of electromagnetic waves. This theory
was first given by Maxwell in 1865 [24]. Presently, the speed of light in vacuo is defined in SI units as
c=2.99792458 × 108ms−1 [25].

Based on the classical electrical measurements Art. 787 and [26], (1.18), the average value of 12 calculations
of the velocity is vc=2.96315 in units of 108ms−1. The average value of 6 directly measured light velocities was 
vm=2.998238. These figures are summarized in Table 1.1. The results of Rosa and Newcombe are the
individual values closest to the present-day velocity of light.

∇2F + μ1K
∂ 2F
∂t2 =0

∇2G + μ1K
∂ 2G
∂t2 =0

∇2H + μ1K
∂ 2H
∂t2 =0

∇2Ax − με
∂ 2Ax

∂t2 =0

∇2Ay − με
∂ 2Ay

∂t2 =0

∇2Az − με
∂ 2Az

∂t2 =0

¯
¯



(1.19)

(1.20)

(1.21)

(1.22)

Table 1.1 Average and individual determinations of the velocity of light from classical electrical
measurements and classical direct measurements (in units of 108 ms-1), Art. 787 [26].
Figures in brackets are percentage differences relative to the present value of 2.997924
[25].

Electrical vc Direct vm
2.96315 2.998238
(−1.16) (0.01046)
Rosa Newcombe
2.9993 2.99766
(0.0488) (−0.000827)

1.5 Energy in electromagnetic waves – radiation pressure

In his theory of light, Maxwell also showed that the energy in electromagnetic radiation produced a stress, which
led to his calculation of the pressure of sunlight [3] Art. 792. J.H. Poynting investigated this in detail a few years
later. Although Poynting is well known for his theory of power flow in electromagnetic fields and the Poynting
Vector [57], he also published a number of papers on the pressure due to electromagnetic radiation. The first of
these was published in 1903 [29]. A comprehensive review of these papers has been given recently [30].

The pressure of electromagnetic radiation continues to be of significant interest because it implies that
electromagnetic waves have momentum. This supports quantum theory, which explains that radiation has
particle-like properties – photons. Radiation pressure is also of interest in astronomy since it helps explain why
the tail of comets is deflected away from the sun. Also, in the design of satellites and other spacecraft, the effect
of the sun's radiation pressure has to be taken into account.

1.5.1 Maxwell on the pressure of sunlight
Maxwell in Art. 792 gives ‘the electrostatic energy per unit volume at any point of the wave in a non-conducting
medium as’

wE =
K

8π
( dF

dt
)

2

ft. lb. ft−3, < wE >=
εE 2

x1

4
Jm−3

wM =
1

8πμ
( dF

dt
)

2

ft. lb. ft−3, < wM >=
μH 2

y1

4
Jm−3

where the first equations, in (1.19) and (1.20) are from Maxwell, Art. 792 given in British units and the second
equations are time averaged energy densities in SI units. F is the vector potential (Ax), Ex1 and Hy1 are the wave
amplitudes. For plane waves in free space Maxwell gives (Art. 790)

d2F

dz2
= Kμ

d2F

dt2

Hence the ratio wE/wM=1. For the SI case and free space with characteristic impedance Zo the ratio of these
energies is

< wE >

< wM >
=

ε

μ

E 2
x1

H 2
y1

= Z 2
o /Z 2

o =1

The two energies are therefore ‘equal for a single wave, that is, at every point on the wave the intrinsic energy of
the medium is half electrostatic and half electrokinetic’. Maxwell then obtained the pressure in the waves by

¯̄



(1.24)

(1.23)

considering the tensions and pressure in the electrostatic and electrokinetic fields which he had earlier analyzed
in great detail including Art. 107 and Art. 643. The following quotation from Art. 792 essentially provides in
words a summary of this analysis.

Let p be the value of either wE or wM, then for the electrostatic state of the medium, there is a tension p in
direction parallel to x, combined with a pressure p in direction parallel to x and z. For the electrokinetic state
of the medium, there is a tension p in direction parallel to y, combined with a pressure p in direction parallel
to x and z. The combined effect of the electrostatic and electrokinetic stresses is a pressure equal to 2p in the
direction of propagation of the waves. Now 2p also expresses the whole energy in units of volume. Hence, in
a medium in which waves are propagated, there is a pressure in the direction normal to the waves and
numerically equal to the energy in units of volume.

For strong sunlight falling on one square foot, Maxwell used a value of 83.4 ft.lb.s-1ft-2 or 1.217 kWm-2.
This value is close to 1.228 kWm-2 as measured by Pouillet [31].

The work done per second, that is, energy dissipated per second is

dW/dt = Fdr/dt = Fv

where the force F or rate of change of momentum is in the same direction as the velocity v. The pressure is then

p =
F

A
=

d(mv)

Adt
=

1

Av

dW

dt

Maxwell determined the velocity of light from the ratio of electric units (Art's 784, 787 v=1/√Kμ ) giving
v=2.88 × 108ms−1 or 9.446 × 108 ft.s−1. Using his value of sunlight energy above gives the average pressure
p=83.4/(9.446 × 108)=8.83 × 10−8 lb.f. Converting this to SI units gives p=4.227 × 10−6 Nm-2. The maximum
pressure is 2p=8.45 × 10−6 Nm-2.

This compares with the present average pressure calculated using a value for the solar radiation (Solar
Constant) of value 1.361kWm−2 [32,33], which gives p=1361/(3 × 108)=4.537 × 10−6 Nm-2 or maximum
pressure 2p=9.073 × 10−6 Nm-2. These results are summarized in Table 1.2. For convenience Table 1.3 lists the
units used by Maxwell with equivalent SI units.

Table 1.2 Sunlight radiation pressure: Comparison of Maxwell's calculation [3,17,21] with present
day results [33]

Refs. Incident energy kWm-2 Speed of light c 108 ms-1 Maximum pressure 10-6 Nm-2

Maxwell 1.217 2.88 8.45
Present 1.361 3 9.07

Table 1.3 British (fps) units used by Maxwell compared with SI and cgs units

British (fps) SI cgs
Force 1 lbf 4.448 N 4.448 ×105 dynes
Pressure 1 lbf ft.-2 47.88 Nm-2 478.8 dynes cm-2

1.5.2 Radiation pressure and wave-particle duality
The pressure of electromagnetic radiation continues to be of significant interest because it implies that
electromagnetic waves have momentum. This supports quantum theory which explains that radiation has
particle-like properties – photons. In a simplified view of the duality between particles and waves, the pressure
or force applied to a particle mass m is, by Newton's first law, the rate of change of the particle's momentum
(1.24). Thus, electromagnetic radiation may be described in terms of energy per second (wave) or change in



(1.27)

(1.28)

(1.29)

(1.30)

(1.31)

(1.32)

(1.33)

(1.34)

(1.35)

(1.25)

(1.26)

momentum (particle) [4,99]. Recently, experiments have been carried out which demonstrate the equivalence of
wave-particle duality with entropic uncertainty relations of quantum mechanics [113].

The subject of quantum optics has recently been reviewed by Barnett [114]. This article is part of a theme
The quantum theory of light published in the same journal.

1.6 Alternative derivation – the Lorentz condition (gauge)

As an alternative approach relating the time dependent current density J(t) to the time dependent magnetic field
H(t) from Ampere's law or Maxwell's equation

J(t) = ∇ × H(t)=(1/μ)∇ × B(t)

=(1/μ)∇ × ∇ × A=(1/μ)[∇(∇. A) − ∇2
A]

The time dependent current density which includes the displacement current is given by (1.4)

J(t) = −(σ + ε
∂

∂t
)( ∂A

∂t
+ ∇Ψ)

which expands to

J(t) = −(σ∇Ψ + ε
∂∇Ψ

∂t
+ σ

∂A

∂t
+ ε

∂ 2
A

∂t2
)

Equating with (1.26) gives

−(σ∇Ψ + ε
∂∇Ψ

∂t
+ σ

∂A

∂t
+ ε

∂ 2A

∂t2
)=(1/μ)[∇(∇. A − ∇2

A]

This is the same as (1.7) after expanding the terms in brackets. Re-writing (1.29)

−σ∇Ψ − ε
∂∇Ψ

∂t
= σ

∂A

∂t
+ ε

∂ 2A

∂t2
+ (1/μ)[∇(∇. A) − ∇2

A]

Dividing by σ

−∇Ψ − (ε/σ)
∂∇Ψ

∂t
=

∂A

∂t
+ (ε/σ)

∂ 2
A

∂t2
+ (1/μσ)[∇(∇. A) − ∇2

A]

Applying the Lorenz condition [34]

∇. A = −εμ
∂Ψ

∂t

∇(∇. A) = −εμ
∂∇Ψ

∂t

Substituting (1.33) into (1.31) gives

−∇Ψ − (ε/σ)
∂∇Ψ

∂t
=

∂A

∂t
+ (ε/σ)

∂ 2
A

∂t2
+ (1/μσ)[−εμ

∂∇Ψ

∂t
− ∇2

A]

−∇Ψ = (ε/σ)
∂ 2A

∂t2
+

∂A

∂t
− (1/μσ)∇2

A



(1.36)

(1.37)

(1.38)

(1.39)

(1.40)

(1.41)

(1.42)

(1.43)

(1.44)

Thus since − ∇ Ψ = Vemf then the general equation for the emf in the time domain is

Vemf = (ε/σ)
∂ 2A

∂t2
+

∂A

∂t
− (1/μσ)∇2

A

For cylindrical co-ordinates this becomes

Vemf = −(1/μσ) [ ∂ 2
A

∂r2
+

∂A

r∂r
− με

∂ 2
A

∂t2
− μσ

∂A

∂t
]

Multiplying (1.35) by σ gives

−σ∇Ψ = ε
∂ 2

A

∂t2
+ σ

∂A

∂t
− (1/μ)∇2

A

Re-arranging (1.35) we obtain

−∇Ψ −
∂A

∂t
= (ε/σ)

∂ 2A

∂t2
− (1/μσ)∇2

A = E

That is

∇2
A − με

∂ 2A

∂t2
= −μσE = −μJ

A similar equation may be obtained for the scalar potential Ψ. From (1.3) and Maxwell's equation ∇. E = ρv/
ε

∇. E = −
∂∇. A

∂t
− ∇.(∇Ψ) = ρv/ε

Applying the Lorenz condition (1.32) gives

∇2Ψ − με
∂ 2Ψ

∂t2
= −

ρv

ε

Equations (1.40) and (1.42) are inhomogeneous wave equations for vector and scalar potentials respectfully.
Their solutions are discussed in detail elsewhere [22,43].

1.6.1 Non-conductors
For materials with very high resistivity and conductivity close to zero, that is, σ ≈ 0 then (1.40) becomes

∇2
A − με

∂ 2A

∂t2
=0

which is a homogeneous wave equation agreeing with Maxwell, (1.16).

1.6.2 Conductors
For materials with very high conductivity and negligible displacement current, then (ε/σ) ≈ 0. In copper for
example (ε/σ) ≈ 10−20. Then from (1.39) or (1.40)

∇2
A = −μσE = −μJ

Equation (1.39) also gives



(1.45)

(1.46)

(1.47)

(1.48)

(1.52)

(1.54)

(1.55)

(1.49)

(1.50)

(1.51)

(1.53)

−∇Ψ −
∂A

∂t
= −(1/μσ)∇2

A

This may also be re-written in terms of the emf since Vemf = − ∇ Ψ. Hence,

Vemf = −∇Ψ =
∂A

∂t
− (1/μσ)∇2

A

These equations are used in the time domain analysis of conductors [82]. The impedance of the conductor in the
time domain is

Z =
Vemf

I
=

Vemf

∫
S

J. dS
= −(1/μσ)∇2

A − (1/μ)∫
S

∇2
AdS = −

[μ ∂A

∂t − ρ∇2A]

∫
S

∇2AdS

Substituting for (1.44) leads to

Z =
∂A

∂t + ρJ

∫
S

J. dS
= (E +

∂A

∂t
)/I =

Vemf

I

agreeing with first part of equation (1.47). For conduction in the z-direction only, Faraday's Law gives for the
time dependent emf

Vemf(t) = −LextdI/dt = −dAz/dt

where Lext is the external inductance. The total emf is then

Vemf = Ez + LextdI/dt

The impedance is

Z = Vemf/I = (ρJz + LextdI/dt)/I

For current flowing in the z-direction only in a solid cylindrical conductor then (1.46) becomes

Vemf = −
ρl

μ
( ∂ 2Az

∂r2
+

1

r

∂Az

∂r
) + l

∂ Az

∂t

Maxwell [3,17,21] Art. 689 solved this equation by assuming Az to be represented by the series

Az = S + To + T1r
2 + T2r

4 + T3r
6 + ⋯ + Tnr

2n + ⋯ +

where S, To, T1, etc. are functions of time. After differentiating equation (1.53) and after some considerable
algebra [36] or using matrix algebra [66] the emf becomes

Vemf = RoI + LoI
(1) −

μ2l2

12Ro
I (2) +

μ3l3

48R2
o

I (3) −
μ4l4

180R3
o

I (4)+, etc.

where μ = μoμr/(4π) and I(m) is the mth derivative of the current. I is the current, Ro and Lo are the low
frequency resistance and inductance, respectively. This inductance is the sum of the internal inductance of the
conductor plus its external inductance, that is, Lo = Lint + Lext where it is derived in the vector potential
approach rather than assumed, [84]. Equation (1.54) may be re-written as

Vemf = RoI + Lo
dI

dt
− Ro

∞

∑
m=2

(−1)mfm(
a

d
)

2m
I (m)



(1.56)

(1.57)

(1.58)

(1.59)

(1.60)

(1.61)

(1.62)

(1.63)

where

d = √ 4ρ

μo
ms−1/2, I (m) =

dmI

dtm
, f2 =

1

12
, f3 =

1

48
, f4 =

1

180
...,etc.

Previously, the f-coefficients were found to fit a power law relationship [82]

fm = ar10brm, m=1,2,3,4,5, etc.

where ar=1.13721 and br = − 0.5675.
Maxwell's approach to solving the vector potential diffusion equation for current flowing in a long

cylindrical conductor leads to a power series 55. This gives the correct results at low frequencies and is
consistent with Bessel function solutions. However, it turns out that the series solution diverges if the ratio of
conductor radius to skin depth a/δ exceeds 2.7. This is close to the mathematical irrational number e=2.718. This
divergence has been considered previously to be a consequence of mathematical inversion, but this has not yet
been proved for the power series case [82]. The problem of series solution instability is also discussed by Arfken
[6]. Previously, there has been criticism of Maxwell's analysis of current flowing in a ‘solitary wire’ [39], and
this has prevented publication of some papers on this topic. However, it turned out these criticisms were invalid
since in Art. 682 Maxwell stated explicitly that he was referring to a complete circuit of ‘two very long parallel
conductors’ [82]. But it has also been shown that the equations also apply to a solitary conductor [40].

1.6.3 Solution using Bessel functions
For sine waves the current density in terms of Bessel functions is given by [38]

Jz = Jdc
ua

2

Jo(u)

J1(ua)

and the impedance is

Z = Rdc

ua

2

Jo(u)

J1(ua)
+ jωLext

where Jo(u) and J1(ua) are zero and first order Bessel functions of the first kind respectively,

Rdc =
ρz

πa2

u = j3/2√2(r/δ), ua = j3/2√2(a/δ)

δ = √2ρ/μω

and δ is the skin depth. It is interesting that Maxwell solved the vector potential non-homogeneous partial
differential (1.52), which includes the source, whereas most authors solve homogeneous partial differential
equations (PDEs) in terms of the electric and magnetic fields, which exclude the source [1,12,38,77].

1.7 Final equations for the time dependent electromagnetic field

From (1.38)

∇2
A = με

∂ 2A

∂t2
+ μσ

∂A

∂t
+ μσ∇Ψ



(1.64)

(1.65)

(1.66)

(1.67)

(1.68)

(1.69)

and from the Helmholtz Wave Equations 2.50 and 2.54

∇2
E = με

∂ 2E

∂t2
+ μσ

∂E

∂t
+ ∇(ρv/ε)

∇2
H = με

∂ 2
H

∂t2
+ μσ

∂H

∂t

1.8 Summary and discussion

In this chapter, I have reviewed James Clerk Maxwell's theory of electromagnetic disturbance through a uniform
medium. Maxwell's approach was to use vector potentials. This is in contrast to the common method, which
solves the electric and magnetic fields separately using ‘Maxwell's equations’ to formulate the Helmholtz
equations, then setting the diffusion terms and the charge density to zero. In this, I have compared Maxwell's
expressions, which used old German Euler Fracture fonts and electromagnetic units, with modern expressions
that use SI units. Apart from a few differences in expressions for the components of the vector potential F, G, H
and negative Laplacian (−∇2) used by Maxwell, the modern equations, as expected, are the same as Maxwell's.
In deriving the wave equations for propagation in non-conductors, Maxwell effectively used the Coulomb Gauge
by setting JM = ∇ . A=0 although he does not describe this as ‘Coulomb Gauge’.

In the alternative approach to obtaining the general equations of electromagnetic disturbances, the Lorentz
condition (1.32) is applied, which yields source-dependent inhomogeneous wave and diffusion equations for the
vector potential. The impedance is then determined for the time domain in terms of the vector potential only
equation (1.47) and the frequency domain using Bessel functions equation (1.59).

1.9 Appendix

1.9.1 Proof of (1.3)
From Maxwell's equation for Faraday's law

∇ × E = −
∂B

∂t
= −

∂

∂t
∇ × A

or

∇ × (E +
∂A

∂t
)=0

The vector quantity in (1.67) has no curl, that is, it is irrotational and can be derived from the gradient of a
scalar potential, − ∇ Ψ. Hence,

E = −∇Ψ −
∂A

∂t

which is proof of (1.3). This equation essentially expresses Helmholtz's theorem, which is more rigorously
proved in reference [34].

An alternative method [20] applies Faraday's law via the magnetic flux Φ. For a closed surface S

Φ = ∫
S

B. dS = ∫
S

∇ × A. dS = ∮
l

A. dl

Faraday's Law gives the emf as



(1.70)

(1.71)

(1.73)

(1.72)

(1.74)

(1.75)

(1.76)

(1.77)

(1.78)

(1.79)

(1.80)

(1.81)

(1.82)

Vemf = ∮
l

E. dl = −
∂Φ

∂t
= −∮

l

∂A

∂t
. dl

Hence,

E = −
∂A

∂t

For steady state fields (d.c.), the electric field is given by the negative gradient of a scalar potential only i.e.

E = −∇Ψ

The total field is then

E = −∇Ψ −
∂A

∂t

The first approach assumes the most general electric field, which has both non-zero divergence and non-zero
curl. This can be derived from the negative gradient of a scalar potential − ∇ Ψ and a vector potential A; a
statement of Helmholtz's theorem. The second method finds the sum of steady-state and time-dependent fields.
The two approaches lead to the same result (1.3).

1.9.2 Proof of (1.5)
From Maxwell Arts. 616 and 783, Equation (4),

∂γ

∂y
= ( ∂ 2G

∂xdy
−

∂ 2F

∂y2
)/μ1

∂β

∂z
= ( ∂ 2F

∂z2
−

∂ 2H

∂xdz
)/μ1

4πuμ1 =
∂γ

∂y
−

∂β

∂z
= ( ∂ 2G

∂xdy
−

∂ 2F

∂y2
−

∂ 2F

∂z2
+

∂ 2H

∂xdz
) = Y

Y = ( ∂ 2G

∂xdy
− ( ∂ 2F

∂x2
+

∂ 2F

∂y2
+

∂ 2F

∂z2
) +

∂ 2F

∂x2
+

∂ 2H

∂xdz
)

∂JM
∂x

=
∂ 2F

∂x2
+

∂ 2G

∂xdy
+

∂ 2H

∂xdz

∇2F = −( ∂ 2F

∂x2
+

∂ 2F

∂y2
+

∂ 2F

∂z2
)

Hence,

4πuμ1 =
∂JM
∂x

+ ∇2F

Similarly,

4πvμ1 =
∂JM
∂y

+ ∇2G

4πwμ1 =
∂JM
∂z

+ ∇2H
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(1.94)
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1.9.3 Proof of the SI equation (1.5)

J = ∇ × H=(1/μ)∇ × B=(1/μ)∇ × ∇ × A=(1/μ)[∇(∇. A − ∇2
A]

Hence,

μJ = −∇2
A + ∇(∇. A)

1.9.4 Alternative derivation of (1.29)
From the Helmholtz wave equation for the electric field (2.50)

∇2
E = μσ

∂E

∂t
+ με

∂ 2E

∂t2
+ ∇(ρv/ε)

∇2
E = ∇(∇. E) − ∇ × ∇ × E

Using (1.3)

E = −
∂A

∂t
− ∇Ψ

Now the ρv term cancels because

∇(∇. E) = ∇(ρv/ε)

Also

∇ × ∇ × E = −∇ ×
∂B

∂t
= −

∂

∂t
∇ × ∇ × A

Integrating with respect to t

=(1/μ)∇ × ∇ × A = −(σ ∂A

∂t
+ ε

∂ 2A

∂t2
+ ε

∂∇Ψ

∂t
+ σ∇Ψ)

σ
∂A

∂t
+ ε

∂ 2A

∂t2
+ ε

∂∇Ψ

∂t
+ σ∇Ψ + (1/μ)(∇(∇. A − ∇2

A)=0

which is the same as (1.29).

1.9.5 The continuity equation
The continuity equation arises from the consideration of charge conservation in analogy with the conservation of
energy and the conservation of matter. Consider a closed surface S, volume V, containing charge +Q. The total
current emerging is

I = ∮
S

J. dS = −
dQ

dt
= −

d

dt
∫
V

ρvdV

∇2E = ∇(∇. E) − ∇ × ∇ × E

= μσ
∂(− ∂A

∂t −∇Ψ)
∂t + με

∂ 2(− ∂A

∂t −∇Ψ)
∂t2 + ∇(ρv/ε)

−∇ × ∇ × E = ∂
∂t ∇ × ∇ × A

= −μσ ∂ 2
A

∂t2 − με ∂ 3
A

∂t3 − με ∂ 2∇Ψ
∂t2 − μσ ∂∇Ψ

∂t
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(1.101)
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(1.103)

The divergence theorem is

∮
S

J. dS = ∫
V

∇. JdV

Therefore

∇. J = −
∂ρv
∂t

Thus the current or charge per second diverging from a unit volume is equal to the time rate of decrease of
charge per unit volume.

For finite conductivity, substitute for J from (1.1) and using Maxwell's first equation ∇. E = ρv/ε then

∇. J = ∇.σE + ε
∂∇. E

∂t
=

∂ρv
∂t

+
σρv

ε

Equating this with equation (1.96) gives

∂ρv
∂t

+
σρv

2ε
=0

with a solution

ρv = ρv0e
−kt, k = σ/(2ε)

where ρv0 is the charge at t=0. In the steady state (d.c.)

∂ρv
∂t

=0, ∇. J=0, ρv = ρv0

Discharge of a Capacitor
The discharge of a capacitor through a resistor gives a similar result. This can be obtained using circuit theory.
Summing the voltage across the capacitor VC and resistor VR, Kirchhoff's voltage law gives VC + VR=0. The
charge equation is then

q

C
+ R

dq

dt
=0

This has a solution

q = q0e
−t/(CR)

where q0 is the charge at t=0. This is similar to (1.99) derived from the continuity equation. Note that in this
analysis we have assumed ideal C and R components with no inductance in the circuit. For very rapid discharged
the skin effect of the conductors may become significant. In this case R becomes dependent on the discharge
time or frequency.

1.9.6 Proof that the Lorenz condition leads to the continuity equation
Taking Laplacian of the Lorenz equation (1.32)

∇2∇. A = ∇. ∇2
A = −εμ

∂∇2Ψ

∂t

Substitute for (1.40) and (1.42)
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(1.105)
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(1.111)

(1.112)

(1.113)

(1.114)

∇.(−μJ + με
∂ 2A

∂t2
) = −εμ

∂

∂t
(εμ ∂ 2Ψ

∂t2
− ρv/ε)

−μ∇. J + με
∂ 2∇. A

∂t2
= −(εμ)2 ∂ 3Ψ

∂t3
+

∂μρv
∂t

Applying Lorenz equation (1.32) to the the LHS of (1.105) then this becomes

−μ∇. J + με
∂ 2

∂t2
(−εμ

∂Ψ

∂t
) = −μ∇. J − (εμ)2 ∂ 3Ψ

∂t3

This is then equated with the RHS of (1.105) to give

−μ∇. J − (εμ)2 ∂ 3Ψ

∂t3
= −(εμ)2 ∂ 3Ψ

∂t3
+

∂μρv
∂t

This gives

∇. J = −
∂ρv
∂t

which is the continuity equation.
As an alternative proof, consider only time-dependent current flow as in the derivation of the continuity

equation. Hence, from (1.1) and (1.3)

∇. J = ε( ∂ 2∇. A

∂t2
+

∂∇2Ψ

∂t
)

Substituting for ∇. A from the Lorenz condition (1.32) gives

∇. J = ε
∂

∂t
(−εμ

∂ 2Ψ

∂t2
+ ∇2Ψ)

Now substitute for −ρv/ε from (1.42)

∇2Ψ − με
∂ 2Ψ

∂t2
= −

ρv

ε

Therefore

∇. J = −
∂ρv
∂t

which yields the fundamental continuity (1.96) obtained again using the Lorenz condition.

1.9.7 Proof of (1.37)
From (1.36) for cylindrical co-ordinates with radius r and the vector A in the z-direction only then

∇2Az =
1

r

∂

∂r
(r ∂Az

∂r
) +

1

r2

∂ 2Az

∂ϕ2
+

∂ 2Az

∂z2

For Az = f(r, t) only and constant in the z-direction then

∇2Az =
1

r

∂

∂r
(r ∂Az

∂r
)
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(1.116)

Expanding this equation gives

∇2Az =
1

r
( ∂Az

∂r
+ r

∂ 2Az

∂r2
)

Hence (1.36) becomes

Vemf = −(1/μσ) [ ∂ 2A

∂r2
+

∂A

r∂r
− με

∂ 2A

∂t2
− μσ

∂A

∂t
]

1.10 Table of Euler Fraktur fonts

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

† Conventionally c is referred to as the speed of light because it is constant and a scalar. Maxwell referred to it as the velocity of light.
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Chapter 2
Solution of Maxwell's equations in loss free

and lossy media

2.1 Introduction

The theories of classical electromagnetism have been reduced to four
equations – Maxwell's Equations. These four equations use vector calculus,
considerably simplifying the original mathematics in Maxwell's Treatise [3].
This was proposed by Oliver Heaviside in 1884 and recently reviewed by
D.P. Hampshire [8].

In the following, we assume a linear, isotropic medium where the path of
the medium is stationary. This assumption of a stationary path applies to all
the following chapters. In this case, Maxwell's four equations are [20]:

Differential form (fields) Integral form (boundaries)

div D = ∇. D = ρv, ∮
S

D . dS = ∫
vol

ρV d(vol)

curl E = ∇ × E = −
∂B

∂t
, ∮

l

E . dl = −
∂

∂t
∫
S

B . dS

curl H = ∇ × H = J +
∂D

∂t
, ∮

l

H . dl = I + ∫
S

∂D

∂t
. dS

div B = ∇. B=0, ∮
S

B . dS=0



(2.5)

(2.6)

where the electric field E, electric flux D = εE, current density J = σE,
magnetic flux density B = μH, ρv is the volume charge density, σ is the
material electrical conductivity. εr is the relative permittivity and χe the
electric susceptibility.

The original experiments and theories for these equations were due to:

Equation (2.1) Faraday's experiments on electric flux and Gauss's
theorem.
Equation (2.2) Faraday's experiments and Law.
Equation (2.3) Ampere's law, Biot and Savart's experiments plus
Maxwell's displacement current.
Equation (2.4) Gauss's law for magnetic fields or Maxwell's equation [3],
Eq. 17, Art. 402.

In the above equations

ε = εoεr = εo(1 + χe), μ = μoμr = μo(1 + χm)

where μr is the relative permeability and χm is the magnetic susceptibility.
These parameters arise from electric and magnetic polarisation of the atoms
or molecules in the material. This polarisation has a time dependence that
leads to hysteresis between the applied fields and the fields in the material.
These effects can be accounted for by expressing the parameters in complex
form:

ε = ε′−jε′′, μ = μ′−jμ′′, σ = σ′−jσ′′

where the real and imaginary components are indicated by the prime (') and
double prime (''), respectively, this hysteresis leads to energy loss due to heat
dissipation. This loss is added to the conductive loss due to the material
conductivity σ. The negative signs arise because in a passive material, such
as considered here, there can be no energy gain.

The complex ohmic conductivity arises because electron scattering takes
place in a specific time; the electron relaxation time, τ. Hence, at frequencies
that approach 1/τ, the conductivity becomes complex. The high-frequency
conductivity is given by Chambers [72]



(2.7)

(2.9)

(2.8)

σhf =
σo

1 + jωτ
=

σo

1 + (ωτ)2
(1 − jωτ)

where σo = (nq2τ/m) is the low-frequency conductivity, n the electron
density, q the charge on the electron and m the electron mass.

The current flow is in the same direction as the applied field, but it is
shifted in phase by an angle θ = tan−1( − ωτ). If ωτ>>1, σhf = − jσo/(ωτ) =
nq2/(dm/dt) where dm/dt = jωm. Hence, the high-frequency conductivity
depends on the mass inertia of the electrons. To estimate the frequency at
which this occurs, we require a value for the relaxation time. For copper
τCu=2.4 × 10−14 s. For the high-frequency condition, we require ω>>1/τ or
f>>6.4 × 1012 Hz. This corresponds to frequencies in the far infrared region
of the electromagnetic spectrum.

If the material is anisotropic, then σ, ε and μ may depend on direction in
the material. Each of these parameters can then be expressed as tensors.
Polycrystalline metals, such as copper, silver, gold and aluminium, are
isotropic. Semiconductor crystals Si, Ge, GaAs, etc., are anisotropic. Also,
ferrite materials used in microwave circuits are anisotropic. Isotropic
materials are considered in the following unless mentioned otherwise. The
applied fields are also assumed to be sinusoidal so that the time derivative
can be replaced by jω where ω. is the angular frequency. If the material has
electrical properties that are frequency-dependent, that is, dispersive, then it
may be possible to transform the time-dependent field into a series of
sinusoidal waves using Fourier analysis. The following analysis would then
apply only to a single frequency say ω1.

2.2 Solution of Maxwell's equations in free space

Maxwell's equations for vacuum or free space are:

div D = ρv=0

curl E = −
∂B

∂t
= −μo

∂H

∂t
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(2.11)

(2.12)

(2.13)

(2.15)

(2.14)

curl H = J +
∂D

∂t
= εo

∂E

∂t

div B=0

where for vacuum εr=1 and D = εoE. Hence, divD = divεoE = ρv=0. Since
there are no free charges present, the electric field cannot terminate on
charges, but this does not mean that the electric field does not exist. The
Maxwell curl equations lead to a time rate of change in E and H fields.
Although the steady state current density J is zero, the time rate of change of
E corresponds to a displacement current density. We now show that the
solution of Maxwell's equations lead to wave motion of the electric and
magnetic fields in free space.

2.3 Wave Motion in free space

From Maxwell's equations, taking the curl(curlE)

curl(curl E) = −μo

∂(curlH)

∂t
= −μo

∂

∂t
[ε ∂E

∂t
]

or

∇ × ∇ × E + μoεo
∂ 2E

∂t2
=0

But

∇ × ∇ × E = ∇(∇. E) − ∇2
E

From Maxwell's first equation (2.8), ∇. E=0. Hence,

∇2
E = μoεo

∂ 2E

∂t2

Similarly, we can show that



(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

∇2
H = μoεo

∂ 2H

∂t2

The equation that represents a periodic wave travelling in the +z-
direction is given by

∂ 2f

∂z2
=(1/u2)

∂ 2f

∂t2

where f is the amplitude and u the velocity of a fixed point on the wave, that
is, the phase velocity. This is shown in the following section. Comparing
(2.25) with (2.15) and (2.16), these equations represent periodic waves
travelling at a phase velocity

uo = √ 1

μoεo

By substituting values for the dielectric and magnetic constants,
Maxwell found that uo was close to the value of the velocity of light, c,
measured at that time. Subsequent measurements have confirmed the theory
that light consists of electromagnetic waves. The presently accepted
experimentally measured velocity of light in vacuo is c=2.99792458 ×
108ms−1. Since by definition μo=4π × 10−7Hm−1, then the defined value of
εo=1/(μoc)=8.854187817 × 10−12Fm−1.

For sinusoidal waves, we can put ∂
∂t = jω and ∂ 2

∂t2 = −ω2. The wave
equations, also known as the Helmholtz equations for the electric and
magnetic fields, are then

∇2
E = −β2

E, ∇2
H = −β2

H

where β is the phase constant also referred to as the wave number ko. Hence,

β = ko = ω√μoεo = ω/c

Since ω=2πf and c = fλo where f is the frequency and λo is the
wavelength of the EM waves in free space then β = ko = 2π

λo
. Hence,



(2.21)

(2.23)

(2.24)

(2.22)

λo =
2π

β
=

uo

f
m

The refractive index is defined by n = c/u=1 in free space.

2.3.1 Travelling waves
To show that (2.15) and (2.16) represent periodic waves consider an
arbitrary wave propagating along the z-axis with phase velocity u and
amplitude A, Figure 2.1. After a time t, a point on the wave has moved a
distance ut. Assuming the amplitude is unchanged, then

A = f(z − ut) = f(ut − z)

Figure 2.1 Wave travelling in the positive z-direction

represents a wave travelling in the +z-direction. Similarly, A = f(ut + z)
represents a wave travelling in the −z-direction. Taking the first and second
derivatives with respect to distance gives

∂A

∂z
= f ′(ut − z),

∂ 2A

∂z2
= f ′′(ut − z)

Taking the first and second derivatives with respect to time gives

∂A

∂t
= −uf ′(ut − z),

∂ 2A

∂t2
= u2f ′′(ut − z)
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(2.26)

(2.28)

(2.27)

where f' and f'' represent the first and second derivatives of the function f,
respectively. Hence,

∂ 2A

∂z2
= u−2 ∂ 2A

∂t2

which is the wave equation for the arbitrary periodic pulse. If the wave is
sinusoidal travelling in the positive z-direction a solution to this equation is

A = A0expj(ωt − kz)

where ω=2πf, f is the frequency, k = β=2π/λ, where k is the wavenumber, β
the phase constant and λ the wavelength. Differentiating twice with distance
z and time t, we obtain the phase velocity u = ω/k. If the wave is travelling
in three dimensions then we can replace kz by k. r where k is the wave
vector k = kxi + kyj + kzk and r is the radial distance vector r = xi + yj + zk.
Hence,

A = A0expj(ωt − k. r)

2.3.2 Sinusoidal and non-sinusoidal waves
The example of sinusoidal waves previously discussed is of general practical
importance. Non-sinusoidal waves can also be considered since any function
of time, periodic or non-periodic, can be modelled by a spectrum of waves
as in Fourier analysis. In this case, each sinusoidal or monochromatic wave
can be represented by the complex or phasor form

Es =∣ E ∣ ejωt =∣ E ∣ [cos(ωt) + jsin(ωt)]

the subscript ‘s’ referring to a sinusoidal wave in the s = jω form. The wave
description can then be simplified by taking either the real (cosine) or
imaginary (sine) component of the wave. Standard boldface form E etc is
used in this book to avoid too much complexity similar to Plonsey and
Collin [34]. The amplitude E (V/m) can be represented either by the
maximum or peak value Em or the root mean square Erms = Em/√2.

2.3.3 Relationship between E and H fields – TEM waves
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(2.31)

(2.32)

(2.33)

(2.34)

For the magnetic field, expanding curlE in Maxwell's second equation (2.2),

∇ × E = ( ∂Ez

∂y
−

∂Ey

∂z
)ax + ( ∂Ex

∂z
−

∂Ez

∂x
)ay + (

∂Ey

∂x
−

∂Ex

∂y
)az

=
∂Ex

∂z
ay −

∂Ex

∂y
az

Assuming Ey = Ez=0, and there is no variation of Ex with y, then

∂Ex

∂z
ay = −jωμoH

H = −
1

jωμo

∂Ex

∂z
ay

But, ∂Ex

∂z
= −βEx. Hence,

H =
β

ωμo

Exay or Hy = √ εo

μo

Eoxe
j(ωt−βz)

The Intrinsic Impedance of Free Space is then defined by

Zo =
Ex

Hy

= √ μo

εo
=376.73 Ohms

Equation (2.33) indicates that the magnetic and electric fields are
orthogonal or transverse to the direction of propagation, as shown in Figure
2.2. This is referred to as a Transverse Electromagnetic wave, abbreviated to
‘TEM’ wave. Note that the wave varies sinusoidally both in time and space.
The wave is polarised because E and H have values in one direction only; x
and y, respectively. This wave is also referred to as a plane wave because the
electric and magnetic fields each occur only in a single plane, as shown in
Figure 2.2. By definition, the direction of polarisation refers to the electric
field direction. In the above case, the wave is polarised in the x-direction.
Ordinary daylight is unpolarised, and the E vector moves in random
directions due to sunlight being scattered by the atmosphere.
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Figure 2.2 TEM plane wave propagating in free space showing the
orthogonal E and H fields

Waves propagated in waveguides can either be tranverse electric (TE) or
transverse magnetic (TM) waves.

2.3.3.1 TEM waves – example
Consider a plane wave with x-polarised electric vector E = Exax and y-
polarised magnetic vector H = Hyay. The wave equations are

∂ 2Ex

∂z2
= −β2Ex,

∂ 2Hy

∂z2
= −β2Hy

The solutions for forward travelling waves are

Ex = E1e
−jβz, Hy = H1e

−jβz

where

E1 = Eoe
jωt, H1 = Hoe

jωt

To check this: ∂Ex

∂z = −jβE1e
−jβz and ∂ 2Ex

∂z2 = −β2E1e
−jβz, that is, 

∂ 2Ex

∂z2 = −β2Ex qed.
The time dependent solutions are then

Ex(z, t) = Eoe
j(ωt−βz), Hy(z, t) = Hoe

j(ωt−βz)
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(2.40)

2.3.4 Plane wave with two components
Consider a free space plane EM wave propagated in the z-direction. The
wave has two electric field components Ex and Ey, that is,

E = Exax + Eyay

The magnetic field is then

H = −(Ey/Zo)ax + (Ex/Zo)ay

For forward waves with phase difference ϕ between Ex and Ey

E(z, t) = Eoxe
j(ωt−βz)

ax + Eoye
j(ωt−βz−ϕ)

ay

H(z, t) = −(Eoy/Zo)e
j(ωt−βz−ϕ)

ax + (Eox/Zo)e
j(ωt−βz)

ay

The phase difference ϕ and the relative magnitudes of Ex and Ey determines
the type of polarisation of the wave as shown in Figure 2.3.

Figure 2.3 Plane wave with two components with z = 0: (a) linear
polarisation: Ex = 2,Ey = 1, ϕ = 0, (b) elliptical
polarisation: Ex = 2, Ey = 1, ϕ = π/4, (c) elliptical
polarisation: Ex = 2, Ey = 1, ϕ = π/2, (d) circular
polarisation: Ex = 2, Ey = 2, ϕ = π/2

2.3.5 Free space propagation constants
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In the case this case the medium has permittivity ε = εoεr and permeability μ
= μoμr. εr and μr are the relative permittivity and relative permeability
respectively. The free space propagation constants now become

u = √ 1

με
= c/√μrεr

β = k = ω√με = (ω/c)√μrεr

λ =
2π

β
=

λo

√μrεr

Z =
Ex

Hy
= √ μ

ε
= Zo√

μr

εr

The refractive index is n = c/u = √μrεr. For dielectrics with μr=1
then n = √εr.

2.4 Solution of Maxwell's equations-lossy medium

In this case Maxwell's equations are solved for a medium which has losses
due to power dissipation. This may be due to ohmic resistance in conductors
and hysteresis in ferrous conductors or leakage resistance and hysteresis in
dielectrics. Hence, referring to the beginning of this chapter, taking the
curl(curlE)

curl(curl E) = −μ
∂(curlH)

∂t
= −μ

∂

∂t
[σE + ε

∂E

∂t
]

or

∇ × ∇ × E + μσ
∂E

∂t
+ με

∂ 2E

∂t2
=0

But
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(2.51)

(2.52)

(2.53)
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(2.49)∇ × ∇ × E = ∇(∇. E) − ∇2
E

From Maxwell's first equation (2.1), ∇. E = ρv/ε. Hence,

∇2
E = μσ

∂E

∂t
+ με

∂ 2E

∂t2
+ ∇(ρv/ε)

The equation that represents a periodic wave travelling in the + z-
direction is given by

∂ 2f

∂z2
=(1/u2)

∂ 2f

∂t2

where f is the amplitude and u the velocity of a fixed point on the wave, that
is, the phase velocity. Comparing this with (2.50), then this represents a
modified form of a simple wave which, in addition to the periodic term
represented by the second derivative, includes a diffusion term and a term
due to the gradient of the charge density.

For the H field, we have

∇ × ∇ × H = ∇ × J + ∇ ×
∂D

∂t
= ∇(∇. H) − ∇2

H

From Maxwell's fourth equation (2.4), ∇. H=0 then,

−∇2
H = σ∇ × E + ε∇ ×

∂E

∂t

Using Maxwell's second equation (2.2), then

∇2
H = μσ

∂H

∂t
+ με

∂ 2H

∂t2

Equations (2.50) and (2.54) are the Helmholtz Wave Equations for time
dependent electric and magnetic fields, respectively, in a lossy material also
known as The Equations of Telegraphy.

For sinusoidal waves we can put ∂
∂t = jω and ∂ 2

∂t2 = −ω2. We also
assume zero volume charge density. Hence, the last term in (2.50) is zero.
The wave equation for the electric field becomes
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(2.58)

(2.59)

(2.61)

(2.62)

(2.63)

∇2
E = (−μεω2 + jωμσ)E

Similarly the magnetic field becomes

∇2
H = (−μεω2 + jωμσ)H

Hence,

∇2
E = γ 2

E, ∇2
H = γ 2

H

where,

γ 2 = −μεω2 + jωμσ

If the current density is J = σE, then for sinusoidal waves

∇2
J = γ 2

J

The electric field is also given by

E = −(∇V +
∂A

∂t
)

where V is the potential along the conductor.
γ is the propagation constant which is complex and may be expressed by

γ = α + jβ

where α = attenuation constant and the phase constant β=2π/λ, where λ is
the wavelength.

γ 2 = (α + jβ)2 = α2 − β2 + j2αβ

Comparing with (2.58)

α2 − β2 = −μεω2…(a), 2αβ = ωμσ…(b)

From (b), β = ωμσ/(2α). Substitute into (a) to give



(2.64)

(2.65)

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

α2 −
(ωμσ)2

4α2
= −μεω2,

Multiplying by α2 and re-arranging gives

α4 + μεω2α2 − (ωμσ/2)2=0

Solving this as a quadratic in α2, we obtain α and a similar expression for β:

α = ω√με/2√−1 ± √1 + [σ/(ωε)]2

β = ω√με/2√1 ± √1 + [σ/(ωε)]2

The factor σ/(ωε) is equal to the ratio of the conduction current to the
displacement current and is known as the dissipation factor. This is
discussed in more detail further on in the chapter. If σ=0, then α=0 and 
β = ω√με.

2.4.1 Phase velocity
The general wave (2.51) for sinusoidal waves is

∇2
f = −(ω/u)2

f

Comparison with (2.55) and (2.57) gives for the phase velocity

−(ω/u)2 = γ 2, or u =
jω

γ

Substituting for γ, then

u =
jω

√−ω2με + jωμσ
=

1

√με√1 − jσ/(ωε)

If σ=0, then u=1/√με as for the loss free case.



(2.71)

(2.72)

(2.73)

(2.76)

(2.77)

(2.78)

(2.74)

(2.75)

2.4.2 Refractive index
The refractive index is defined by n = c/u, where c is the velocity of light in
vacuum. Hence,

n⁎ = −jcγ/ω = −(jc/ω)√−μεω2 + jωμσ

Put n⁎ = n' − jk'', where n is the low frequency refractive index and k the
absorption coefficient. n and k are known as the optical constants. Squaring
gives

n⁎2 = (n − jk)2 = n2 − k2 − 2jkn

Squaring (2.71) gives

n⁎2 = −(c/ω)2(−μεω2 + jωμσ)

Comparing (2.72) and (2.73) gives

n2 − k2 = (c/ω)2ω2με = μrεr

2kn = (c/ω)2ωμσ = μrσ/(ωεo)

where c2=1/(μoεo) has been used. Solving for n and k gives

n2 =
μrεr

2
±

1

2
√(μrεr)

2 + 4[σμr/(2ωε)]2

k2 = −
μrεr

2
±

1

2
√(μrεr)

2 + 4[σμr/(2ωε)]2

If σ=0, then n2 = μrεr and k2=0. The absorption coefficient is therefore
zero, as expected. These latter two equations can be rearranged to give

n =
no

√2

√1 ± √1 + [σ/(ωε)]2



(2.79)

(2.81)

(2.80)

k =
no

√2
√−1 ± √1 + [σ/(ωε)]2

Hence, n → no, k → 0 at high frequencies and low σ. At high frequencies ε,
μ or σ may also be complex. Taking ε⁎ = ε' − jε'', then

n2 − k2 = μrεr′, 2kn = μrεr′′ + μrσ/(ωεo)

2.4.3 Debye equations
In polar dielectrics, such as liquid water H2O, the complex permittivity is
given by the Debye equations [48]

ε′=
εs − εi

1 + (ωτ)2
+ εi, ε′′=

ωτ(εs − εi)

1 + (ωτ)2

where εs is the static or low frequency permittivity, εi is the high-frequency
permittivity due to induced polarisation and τ is a relaxation time
characteristic of the material or liquid. In water at 20oC the approximate
values are εs=80, εi=5.0 and τ=9.2ps,[49]. Using these values, the Debye
equations for water are shown plotted in Figure 2.4.



(2.82)

(2.83)

(2.84)

Figure 2.4 Debye plot for water

2.4.4 TEM waves
As before consider a transverse electromagnetic (TEM) wave with x-
polarised electric vector E = Exax and y-polarised magnetic vector H =
Hyay. The wave equations are now

∂ 2Ex

∂z2
= γ 2Ex,

∂ 2Hy

∂z2
= γ 2Hy

The solutions are

Ex = Eoe
−γz, Hy = Hoe

−γz

since ∂Ex

∂z = γEoe
−γz and ∂ 2Ex

∂z2 = γ 2Eoe
−γz, that is, ∂ 2Ex

∂z2 = γ 2Ex qed.
Substituting for (2.61) gives

Ex = Eoe
−γz = Eoe

−(α+jβ)zejωt



This represents a wave travelling in the + z-direction with amplitude
which decreases from Eo at the surface (z=0) to Eoe−(α+jβ)z for z>0. For any
given value of z = z1 the waves oscillates about z1 at an angular frequency
ω. This can be plotted in polar form or linear form as shown in Figure 2.5(a)
and 2.5(b).

Figure 2.5 Electric field penetration into a conductor (a) polar
plot of amplitude over one cycle. (b) E and H
amplitudes over one cycle showing phase delay in H.



(2.85)

(2.86)

(2.87)

(2.88)

(2.89)

(2.90)

(2.91)

2.4.5 Magnetic and electric fields
For the magnetic field, expanding curlE in Maxwell's second equation (2.9),

∇ × E = ( ∂Ez

∂y
−

∂Ey

∂z
)ax + ( ∂Ex

∂z
−

∂Ez

∂x
)ay + (

∂Ey

∂x
−

∂Ex

∂y
)az

=
∂Ex

∂z
ay −

∂Ex

∂y
az

Since Ey = Ez=0, and there is no variation of Ex with y, then

∂Ex

∂z
ay = −jωμH

H = −
1

jωμ

∂Ex

∂z
ay

From (2.83) substitute ∂Ex

∂z  for −γEx to give

H =
γ

jωμ
Exay or Hy =

γ

jωμ
Ex

2.4.6 Impedance
The impedance of a material is defined by the ratio E/H. Hence, from (2.89)

Z =
Ex

Hy
=

jωμ

γ
Ω

Substituting for γ from (2.58) gives

Z = √ μ/ε

1 − jσ/(ωε)

In terms of the phase angle ϕ between Ex and Hy



(2.92)

(2.93)

(2.94)

(2.95)

(2.96)

(2.97)

Z =∣ Z ∣ arg ϕ =∣ Z ∣ ejϕ

where ∣Z∣ = ∣jωμ/γ∣. Hence,

Hy =
Ex

∣ Z ∣
e−jϕ

Substitute for Ex from (2.84) gives

Hy =
Eo

∣ Z ∣
e−αzej(ωt−βz−ϕ)

2.4.7 Summary
For a uniform isotropic lossy material the impedance is everywhere the
same but the magnetic field lags behind the electric field. Extraction of the
wave constants γ, α, β and Z, is not simple for the general case but fairly
straightforward using numerical methods as employed in MATLAB for
example. However, it is important to identify the critical parameters for
several areas in electrical and electronic engineering. There are two limiting
cases which simplify the analysis: (2.1) dielectric with loss and (2.2)
conductor with loss.

2.4.8 Dielectric with loss
In this approximation γ in (2.61) is expanded using the binomial expansion
where ∣x∣<1

(1 − x)1/2 ≈ 1 −
1

2
x −

1

8
x2

γ = jω√με√1 − j
σ

ωε

Taking x = σ
ωε

<0.1, then

γ ≈ jω√με [1 − j
σ

2ωε
+

σ2

8ω2ε2
] = α + jβ



(2.98)

(2.99)

(2.100)

(2.101)

(2.102)

(2.103)

(2.105)

(2.104)

Equating real and imaginary parts gives

α =
σ

2
√ μ

ε

β = ω√με [1 +
σ2

8ω2ε2
] ≈ ω√με

The phase velocity is

u =
ω

β
=

1

√με

The wave impedance is

Z = √ μ/ε

1 − jσ/(ωε)

Using the binomial expansion, where ∣x∣<1

(1 − x)−1/2 ≈ 1 +
1

2
x +

3

8
x2

Z = √μ/ε [1 + j
σ

2ωε
]

2.4.9 Conductor with loss
In this case, let σ > > ωε. Hence, the propagation constant

γ 2 = jωμ(jωε + σ)

becomes

γ = √jωμσ

Using

1



(2.106)

(2.107)

(2.108)

(2.109)

(2.110)

(2.111)

(2.112)

j1/2 =
1 + j

√2

Hence,

γ =
1 + j

√2
√ωμσ

α = β = √ ωμσ

2

The reciprocal 1/α = δ is the Skin Depth with dimensions of metres. This
corresponds to the distance the wave propagates before decaying to e−1

(about 37 per cent) of its maximum value. This is discussed in more detail
further on in the text. From (2.108)

δ=1/α = √ 2

ωμσ

The phase velocity is

u =
ω

β
= √ 2ω

μσ

For σ > > ωε the wave impedance, (2.101), becomes

Z = √ jωμ

σ
= √ωμ/(2σ)(1 + j)=(1 + j)/(σδ), ∣ Z ∣= √ωμρ

Since Z = E/H = ∣Z∣argϕ, then H lags behind E in time by ϕ as shown in
Figure 2.5(b). Hence, for a good conductor tanϕ=1 and ϕ=45∘. The phase
velocity depends on frequency (2.110), and the wavelength depends on
frequency via λ = u/f. In copper, for example,

u=0.4123f 1/2, λ=0.4123f −1/2



(2.113)

(2.115)

(2.116)

(2.117)

(2.114)

2.4.10 Surface resistivity
For the TEM wave considered previously (2.82) incident on a plane good
conductor interface. The average power entering the conductor is [92]

Pav =
1

2
Re∫

So+Sz

E × H
⁎. azds

where E × H⁎ is the Poynting vector, So is the wave surface area and Sz the
area that the wave enters. For a good conductor the wave fields decrease
rapidly as they enter the conductor and Sz can be neglected. Now,

E × H
⁎. az = E. H

⁎
az = az × E. H

⁎

Also, since the impedance is Z = E/H, then

az × E. H
⁎ = ZH. H

⁎ = Z ∣ H ∣2

Thus,

Pav =
1

2
Re ∫

So

Z ∣ H ∣2 ds =
Rs

2
Re ∫

So

H ∣2 ds

where Rs is the surface resistivity of a good conductor.

Rs = Re(Z) = Re[(1 + j)√ ωμ

2σ
] = √ ωμ

2σ
= ρ/δ Ω

that is, the surface resistivity of a good conductor is the ratio of the bulk
resistivity to the skin depth: Rs = ρ/δ Ohms.

Typical values for copper are given in Table 2.1. Equation (2.112) is
shown plotted in Figure 2.6.

Table 2.1 Phase velocity, wavelength, impedance, skin depth and
surface resistivity for copper at 300 K



f
(Hz) u (m/s) λ (m) ∣Z∣(Ω) δ (m) RsΩ
f
(Hz) u (m/s) λ (m) ∣Z∣(Ω) δ (m) RsΩ

50 2.91 5.83 × 10−2 2.59 ×
10−6

9.28 × 10−3 1.83 ×
10−6

106 412 4.123 ×
10−4

3.66 ×
10−4

6.56 × 10−5 2.59 ×
10−4

109 1.3 ×
104

1.3 × 10−5 1.16 ×
10−2

2.075 ×
10−6

8.19 ×
10−3

Figure 2.6 Theoretical phase velocity and wavelength for EM
waves in copper

Generally, in lossy materials, EM waves with different frequencies travel
at different phase velocities and are attenuated by different amounts. In an
EM pulse, for example, consisting of a spectrum of frequencies, each
frequency component will travel at a different velocity, arriving at a distant
point at different times. The pulse shape will therefore change from its
original shape. Such a medium is said to be dispersive.

2.5 Dissipation factor

The total current Jt is the sum of the ohmic current and the displacement
current. The dielectric is lossy with ohmic current loss and loss due to
polarisation of the dielectric. In this case, the permittivity is complex ε = ε' −
jε''. The total current is given by Maxwell's equation (2.3), which for sine
waves is



(2.121)

(2.118)

(2.119)

(2.120)

curl H = Jt = σE + jω(ε′−jε′′)E

Hence,

Jt = (σ + ωε′′)E + jωε′E

This may be rewritten as

Jt = Jc + jJd

where Jc = (σ + ωε'')E is the conduction current and Jd = ωε'E the
displacement current. The dissipation factor is defined as the ratio of the
conduction current to the displacement current, Figure 2.7. Hence,

DF =
Jc

Jd
=

σ + ωε′′

ωε′ = tan δ

Figure 2.7 Dissipation factor angle δ and power factor angle, θ,
defined from the conduction Jc, displacement Jd, and
total current Jt

The imaginary part of the permittivity (ε'') effectively increases the
conduction current and loss tangent. Here δ is the phase angle between
conduction and displacement currents, not to be confused with the skin
depth. A good example of how the dissipation factor varies with frequency
is the case of liquid H2O, Figure 2.8. This result holds up to about 1 GHz.
For frequencies up to about 1 MHz, water is a good conductor. For
frequencies exceeding 1 MHz, the dissipation decreases, and water becomes
a dielectric.



Figure 2.8 Dissipation factor for water at 20°C where εr = ε′
r, 

ε′′
r = 0 for f≤1GHz

Dissipation factors, also known as loss tangents, are used in the
electronics industry to describe the quality of capacitors. Values vary very
widely depending on the type of capacitor (polarised electrolytic or non-
polarised, etc.). Tanδ generally increases with frequency and size of
capacitor [44]. Capacitors with mica or high-quality plastic film may have a
tanδ<10−3 or δ<0.05∘ measured at 1 kHz. Large value electrolytic capacitors
may have tanδ>0.2. Values of tanδ are also expressed as a percentage
relative to tanδ=1 or δ=45∘, that is, a good conductor in (2.121). Some
manufacturers quote power factor, which is the cosine of the phase angle θ.
This assumes the total current Jt ≈ jωεE, that is, the Jt vector in Figure 2.7 is
nearly vertical for small δ. Hence, cos θ ≈ σ

ωε
= tan δ. In this analysis, no

magnetic effects are considered and μr=1. Magnetic effects are considered in
the following section.



(2.122)

(2.123)

(2.124)

(2.125)

(2.126)

(2.127)

2.6 Quasi-static conditions

The potential drop in a conductor carrying current I is Vx = IZ, where Z is
the conductor impedance. Taking the case of a good conductor, copper for
example, with a TEM wave travelling in the z-direction with amplitude in
the x-direction then Vx = Zσ∫sExdydz where Z=(1 + j)√ωμ/(2σ) and Ex =
Eoexp[( − 2π/λ)(1 + j)z]. We assume that the y-dimension is infinite so that
Ex is independent of y. Hence,

Vx = ZσLyEo ∫
Lz

o

e(−2π/λ)(1+j)z dz = ZσLyEo
1 − e(−2π/λ)(1+j)Lz

(2π/λ)(1 + j)

Substituting for Z gives

Vx =
λ

2π
√ ωμ

2ρ
LyEo[1 − e(−2π/λ)(1+j)Lz ]

or

Vx = LyEo[1 − e(−2π/λ)(1+j)Lz ]

since λ=2πδ=2π√ 2ρ
ωμ

. This may be put in quadrature form as

Vx = LyEo{1 − e(−2π/λ)Lz [cos(2π/λ)Lz − jsin(2π/λ)Lz]}

Vx(R) = LyEo{1 − e(−2π/λ)Lzcos(2π/λ)Lz}

Vx(I) = LyEoe
(−2π/λ)Lzsin(2π/λ)Lz

Figure 2.9 shows plots of (2.126) and (2.127), normalised to VN =
Vx/(LyEo). This shows that for

1. Lz = λ then VN(R)=1,VN(I)=0.
2. Lz > λ then VN(R)=1,VN(I)=0.



(2.128)

3. Lz ≪ λ then VN(R)=0 ,VN(I)=0.

Figure 2.9 Normalised voltage (VN = Vx/(LyEo) quadrature
components plotted against ratio of distance in z-
direction over wavelength, using (2.126)and (2.127)

The quasi-static (qs) approximation assumes that the applied signal
wavelength is much greater than the device dimensions. In the above
analysis if λ ≫ Lz, (case 3) then both VN(R) and VN(I) are zero. This implies
that the qs condition applies only to Lz/λ ≈ 0 in Figure 2.9. Taking the first
term only of the binomial expansion of (2.124) gives (see proof at the end of
this chapter)

Vx = LyEo
2π

λ
(1 + j)Lz

Hence, both the real and imaginary voltages vary linearly with Lz/λ near
the origin. Also for a fixed wavelength Vx ∝ Lz as expected. We may also

substitute λ=2πδ=2π√ 2ρ
ωμ

 into (2.128) to give



(2.129)

(2.130)

Vx = LyEoLz√
ωμ

2ρ
∝ √ω

showing that the voltage is proportional to the square root of the frequency.
This is also expected since for a good conductor 
V = IZ = I(1 + j)√ωμ/(2σ), which is proportional to the square root of
the frequency.

2.6.1 Equivalent circuit approximations-lossy conductor and
superconductor

For quasi-static conditions, that is, wavelengths much larger than the device
dimensions, the E and H fields are similar to static fields [43], and unique I
and V values can be identified. Figure 2.10 shows the equivalent circuit of a
device or material. Rn is the normal resistance due to ohmic conduction, Ln
the associated normal inductance due to magnetising current, and Cn the
normal capacitance due to displacement current. In this model, both the
permeability and the permittivity are assumed to be complex. Lλ is the ideal
superinductance (see Superconductivity in 3.3.2). Also included is the total
inductance due to leads, although the four-terminal technique tends to
minimise this inductance. The total current driven through the device is
given by circuit theory as

I =
V

ZLn

+ jωCnV +
V

jωLλ

= Y V

Figure 2.10 Equivalent circuit of device showing lead inductance
Ll, normal inductance, resistance and capacitance Ln,



(2.131)

(2.132)

(2.134)

(2.136)

(2.133)

(2.135)

Rn, Cn, respectively, and superinductance Lλ

where Y is the admittance of the device and

ZLn
= Rn + jωLn, Z 2

Ln
= R2

n + (ωLn)2

Rationalising and re-arranging gives

Y =
Rn

Z 2
Ln

+ jω[Cn −
Ln

Z 2
Ln

−
1

ω2Lλ

]

J = [σe + jωε − j/(ωLe)]E

where

σe =
Rn

Z 2
Ln

g,
1

Le
= [ ω

2Ln

Z 2
Ln

+
1

Lλ
]g

Lλ = μλ2g, Ln = μa2g

where λ is the superconducting penetration depth, the equation for Ln is for a
slab of material where g is a geometrical factor g = d/A. d is the distance
between voltage contacts, a is the half-thickness of the slab, and A is the
cross-sectional area perpendicular to the current path (A=2aX), Figure 2.11.
A more accurate equation for the low frequency inductance of a rectangular
slab is [46] originally given by Terman [45], here converted to SI units,

L=2 [ln l

w + t
+ 1.19 + 0.22

w + t

l
] nH cm−1



(2.137)

(2.138)

(2.139)

(2.140)

(2.141)

Figure 2.11 Rectangular slab with four contact pads for the
measurement of impedance. The current I is injected
into contact I+ and extracted from contact I−. The
potential drop V is measured between the inner voltage
contacts using a high input impedance voltmeter. This
minimises contact resistance effects.

where l, w, t are the length, width and thickness of the slab, respectively. For
a square sheet l = w > > t then Ln=2.82 nH cm-1. These values decrease by
approximately 10 per cent at microwave frequencies [46].

2.6.2 Impedance
Re-write (2.133) as

J = jω[σe/(jω) + ε − 1/(ω2Le)]E = jωε⁎
E

where the effective permittivity ε⁎ is

ε⁎ = ε − 1/(ω2Le) − jσe/(ω).

The impedance for the loss free case is from (2.46)

Z =
Ex

Hy

= √ μ

ε

Substituting for ε⁎ gives

Z = √ μ

ε⁎ = √μ/[ε − 1/(ω2Le) − jσe/(ω)] =
jωμ

γ

where the propagation constant is

γ = √−ω2με + μ/Le + jωμσe

If there is no inductive current, that is, μ/Le=0 then



(2.142)

(2.143)

(2.144)

(2.145)

(2.146)

(2.147)

(2.148)

(2.149)

γ = √−ω2με + jωμσe

which agrees with the lossy medium case equation (2.58).

2.6.3 Complex μ and ε
In this section, the material is considered to have complex permeability and
permittivity. The total current is now

I =
V

Z
⁎
Ln

+ jωC ⁎
nV +

V

jωL
⁎
λ

= Y ⁎V

where the stars * indicate complex components. The normal inductive
impedance becomes

ZLn = Rn + jωL⁎
n = Rn + jω(L′

n − jL′′
n)

Hence,

Z
⁎
Ln = Rn + ωL′′

n + jωL′
n

where

L⁎
n = L′

n − jL′′
n, L′

n = μ′a2g, L′′
n = μ′′a2g

The superinductance is

L
⁎
λ = L′

λ − jL′′
λ = μ′λ2g − jμ′′λ2g

The current density becomes

J
⁎ = [σ⁎

e + jωε′ − j/(ωL⁎
e)]E

where

σ⁎
e =

Rng

Z
⁎2
Ln

+
L′′
λg

ωL
⁎2
λ

+ ωε′′



(2.150)

(2.151)

(2.153)

(2.154)

(2.155)

(2.152)

1

L
⁎
e

=
ω2L′

ng

Z
⁎2
Ln

+
L′
λg

L
⁎2
λ

2.6.4 Mutual coupling effect
The impedance of two inductors in parallel is given by Raven [47]

Z =
Z1Z2 − X 2

M

Z1 + Z2 − X 2
M

where XM = jωM is the mutual inductive reactance coupling the two
inductors. For the case of normal current coupling with a supercurrent,
Figure 2.10, then

Z1 = Zn = Rn + jωLn, Z2 = Zλ = Rλ + jωLλ, XM = jωM

where Zn, Rn, Ln are normal impedance, resistance and inductance,
respectively. Zλ, Rλ, Lλ are superconducting impedance, resistance and
inductance respectively. Any or all of these parameters may be complex due
to complex μ and ε. However, the normal conductivity σn is only likely to be
complex at optical frequencies, far exceeding this quasi-static approximation
(see page 40). Although ideally Rλ is zero, in practice, some loss may occur
due to vortex dissipation.

The mutual coupling is defined by

M = k√L1L2 = k√LnLλ

where k is the coupling coefficient, which is expected to be close to unity for
a simple superconductor. The total impedance, including the parallel leakage
impedance Zl is

ZT =
ZZl

Z + Zl

=
Z

Z/Zl + 1

The admittance Y=1/Z is

YT = Z−1 + Z−1
l



(2.157)

(2.156)

(2.158)

(2.160)

(2.161)

(2.162)

(2.159)

For a simple rectangular device, Figure 2.11, length d and current path
crossectional area A; the specific admittance is yT = YTd/A = YTg where g =
d/A. The current density is then

J = yTE = (y + yl)E = YTgE

To check this put XM=0,Rλ=0 and yl = jωCng = jωε. Hence,

J = [ Rn

Z 2
Ln

+ jωCn − j( ωLn

Z 2
Ln

+
1

ωLλ

)]gE = YTgE

J = [σe + jωε − j/(ωLe)]E = yTE

where σe = Rng/Z 2
Ln

, ε = Cng and 1/Le = [ω2Ln/Z 2
Ln

+ 1/Lλ]g. This
agrees with (2.133) and (2.134). Note that if ε or μ are complex then the real
and imaginary parts of (2.157) and (2.158) are modified.

2.6.5 Normal state with complex μ and ε
In this case assume λ → ∞. Hence Lλ=0 in (2.135). Introduction of complex
μ gives

Ln = μa2g = (μ′ − jμ′′)Ln1 Ln1 = μoa
2g

g = d/A, A is the crossectional area of the rectangular device length d, Figure
2.11.

σe =
Rn

R2
n + [ωLn1(μ′ − jμ′′)]2

=
Rn

A1 − jB

1

Le
=

ω2Lng

R2
n + (ωLn)2

=
ω2Lng

A1 − jB

J = [Rng
A1 + jB

A12 + B2
+ jω(ε′−jε′′) − jωLng

A1 + jB

A12 + B2
]E

Hence,



(2.164)

(2.165)

(2.166)

(2.163)

(2.171)

(2.167)

(2.168)

(2.169)

(2.170)

J = (CA1 + DB + ωε′′)E + j(BC − DA1 + ωε′)E

tan δ =
(CA1 + DB + ωε′′)E

BC − DA1 + ωε′

where

A1=R2
n + (ωLn1)2(μ′2 + μ′′2), B=2μ′μ′′(ωLn1)2

C =
Rng

A12 + B2
, D =

ωLng

A12 + B2

2.7 Proof of equation (2.128)

Re-writing (2.124) as

Vx = LyEo[1 − ex]

where

x = (−2π/λ)(1 + j)Lz

The binomial expansion of ex is

ex=1 + x/1! + x2/2! + x3/3! + ⋯

The first term of this expansion leads to

Vx = LyEo[1 − ex] = LyEo[1 − (1 + x)] = LyEo − LyEo(1 + x)

Substituting for (2.168) gives (2.128)

Vx = −LyEo[(−2π/λ)(1 + j)]Lz = LyEo

2π

λ
(1 + j)Lz



(3.1)

(3.2)

(3.3)

(3.4)

Chapter 3
Power dissipation and Poynting's theorem

3.1 Steady state dc power dissipation

The work done per second or energy per second, that is, power dissipated is

p = dW/dt = F. dr/dt = ρvE. v = E. J

where r is the distance moved by the charge, v its velocity and J the electric current
density J = ρvv. Hence, the power dissipated per unit volume is

p = E. J, watts m−3

This energy loss per second can then be equated to the energy or power in the
electric and magnetic fields, leading to Poynting's theorem.

For uniform current flow J = I/A, where A is the cross-sectional area of the
conductor length l, E = − ∇ ψ = V/l volts per m. Hence, the power dissipated in
volume lA is

p = E. J lA = (V /l)(I/A)lA = V I, watts

In an alternative approach, the work done on moving a charge q through a
potential difference V is W = qV joules or eV electron volts. The current is I = q/t.
Hence, the power dissipated is

p = W/t = V I, watts

The first approach is important because it can immediately be related to Maxwell's
equations as shown in the section on Poynting's theorem 3.3.



(3.5)

(3.9)

(3.10)

(3.6)

(3.7)

(3.8)

(3.11)

3.2 Power dissipation in the time and frequency
domain

3.2.1 Time domain
Time-dependent electric and magnetic fields are common and range from transient
effects such as switching on/off lights or motors, charging and discharging
capacitors, and transient phenomena, including electrical breakdown in insulators
and air, such as lightning. In general, power dissipated or delivered to a load is
determined from the product of the time-dependent functions v(t) and i(t). The
energy delivered to a load for t1 < t < t2 is then

w = ∫
t2

t1

v(t)i(t)dt

3.2.2 Frequency domain
For sinusoidal currents and voltages in the frequency domain, consider the case of a
resistor in series with an inductor with sinusoidal current i and sinusoidal voltage v
which leads the current by a phase angle ϕ, [27]. The maximum values are im and
vm, and the instantaneous values are

i = im sin θ, v = vm sin(θ + ϕ)

where θ = ωt. The instantaneous power is

p = vi = vmim sin θ sin(θ + ϕ)

p = vi = vmim sin θ[sin θ cos ϕ + cos θ sin ϕ]

Substituting

sin2θ =
1

2
(1 − cos 2θ), sin θ cos θ =

1

2
sin 2θ

gives

p = vmim [ 1

2
(1 − cos 2θ) cos ϕ +

1

2
sin 2θ sin ϕ]

p = (vmim/2)[ cos ϕ − cos 2θ cos ϕ) + sin 2θ sin ϕ]



(3.12)

(3.14)

(3.13)

(3.15)

(3.18)

(3.19)

(3.17)

(3.16)

Now the rms current and voltages are given by

I = Irms = im/√2, V = Vrms = vm/√2, IV = VrmsIrms = vmim/2

Hence,

p = V I cos ϕ − V I cos (2θ − ϕ)

The power factor is defined as

PF =
mean power

rms volt amps
=

P

V I

For the RL circuit

PF = cosϕ

The mean power is

P = V I cos ϕ

3.2.3 Instantaneous power
Expanding (3.13) gives

p = V I cos ϕ − V I cos ϕ cos 2θ + V I sin ϕ sin 2θ

Thus

p = steady power in R − osc. power in R at 2f + osc.power in X at 2f

The terms in (3.17) are:
1. First term. Steady power dissipated in the resistive or Ohmic elements

P = I 2R = V I cos ϕ watts

2. Second term. Oscillatory power at 2f dissipated in R. Does not involve stored
energy and is usually ignored.

3. Third term. Oscillatory power at 2f dissipated in reactive elements X. Important
in power systems and associated with reactive stored energy in L or C. It has a
maximum value

Q = V I sin ϕ = I 2X vars



(3.27)

(3.30)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.28)

(3.29)

(3.31)

ϕ
The instantaneous power is then

p = P + Q

where P and Q are given by (3.19) and (3.20), respectively. These may be
expressed in phasor form

S = P + jQ = V I(cos ϕ + j sin ϕ)

But note that
1. P is the steady state non-oscillatory power measured in watts.
2. Q is the maximum value of double frequency oscillatory power flow into the

reactance X measured in vars.
None of these P, Q or S are sine components at frequency f with instantaneous

time value.
Now let I have a phase angle ϕ ahead of V which implies that the circuit is

predominantly capacitive. Hence,

ϕ = ϕI − ϕV

Let the current and voltage phasors be given by

I = a + jb, V = c + jd

P = V I cos ϕ = V I cos(ϕI − ϕV )

= V I[cos ϕI cos ϕV + sin ϕI sin ϕV ]

= V I[ a
I

.
c

V
+

b

I
.
d

V
] = (ac + bd), watts

Q = V I sin ϕ = V I sin(ϕI − ϕV )

= V I[sin ϕI cos ϕV − cos ϕI sin ϕV ]

= V I[ b

I
.
c

V
−

a

I
.
d

V
] = (bc − ad), vars

The phasor product I. V should give dimensions of power. Thus

I. V = (a + jb)(c + jd) = (ac − bd) + j(bc + ad) ≠ P + jQ



(3.32)

(3.33)

(3.34)

(3.36)

(3.35)

(3.37)

Hence the real part of I. V does not give P and the imaginary part does not give
Q. To overcome this problem we take the complex conjugate of either I or V but
not both. The two schemes are

In scheme (1) using the supply voltage phasor as the reference (datum) then if

V = V + j0=V − j0=V
⁎

I = IP ± jIQ = I(cos ϕ ± j sin ϕ)

S = V ⁎
I = V I = V IP ± jV IQ = P ± jQ

Hence, the P and Q components of S are directly related to the current
components IP and IQ, their magnitude and sign.

In Scheme (2), Q is positive for inductive loads and lagging current. Since a
very large proportion of industrial loads are, inductive then with +Q the vars are
positive. If Scheme (1) was employed, it would be necessary to nearly always refer
to negative vars.

3.3 Power Flow-Poynting's theorem

This section considers power flow in electromagnetic fields [57]. The theory
considers the additional energy due to electromagnetic effects. It does not include
other sources of energy dissipation due to mechanical and acoustic energy inputs,
[58]. Consider an electrical power source ps applying energy to a material with
volume V. The energy dissipated W per unit volume is the work done by the
applied field E in moving charge a distance d

W = ρvE. d

where ρv is the volume charge density. The rate of energy dissipated is the power
dissipated

d d

1. S = V⁎. I = (c − jd)(a + jb) = (ac + bd) + j(bc − ad)

= P + jQ, as equation (3.22) .

2. S = V. I
⁎ = (c + jd)(a − jb) = (ac + bd) + j(ad − bc)

= P − jQ, different.



(3.38)

(3.40)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.39)

(3.41)

dW

dt
= pd = ρvE.

dd

dt
= ρvE. v

where v is the charge velocity. Also by definition the current density is J = ρvv.
Hence, the power dissipated per unit volume is

pd = E. J

From Maxwell's Ampere equation J = ∇ × H–
⋅

D where 
⋅

D = ∂D/∂t,

pd = E.(∇ × H −
⋅

D).

Using the vector identity

∇.(E × H) = H.(∇ × E) − E.(∇ × H)

pd = [H.(∇ × E) − ∇.(E × H) − E.
⋅

D]

Substituting for Maxwell's equation ∇ × E = − B gives

pd = −[H.
⋅

B +
⋅

D + ∇.(E × H)]

Integrating equation (3.43) over volume V gives

Pd = −[∫
V

[H.
⋅

B + E.
⋅

D]dV + ∫
V

∇.(E × H)dV ]

Using Gauss's theorem

∫
V

∇.(E × H)dV = ∮
S

(E × H). ds

gives

Pd = −[∫
V

[H.
⋅

B + E.
⋅

D]dV + ∮
S

(E × H). ds]

Integrating (3.39) over volume V gives

Pd = ∫
V

E. JdV



(3.48)

(3.49)

(3.51)

(3.50)

Equating (3.46) and (3.47) give

∫
V

E. JdV = −[∫
V

(H.
⋅

B + E.
⋅

D)dV + ∮
S

(E × H). ds]

Thus, the total power dissipated is equal to the sum of the rate of decrease of the
electric and magnetic energies in the volume V and the power flow out across the
surface S. From this (3.48), the flow out can be expressed by

∮
S

(E × H). ds = −[∫
V

(H.
⋅

B + E.
⋅

D + E. J)dV ]

This shows that the total power flow out across the closed surface S is equal to the
rate of decrease of the energy in the electric and magnetic fields plus the Joule
power dissipation in the volume V. This is Poynting's Theorem. The vector

S = E × H

is Poynting's vector. This has dimensions of Watts/m2 and its direction is that of
power flow. The symbol S is used for the Poynting vector not to be confused with
the area vector S. For this reason some authors use the symbol P.

For the case of energy flowing into a material (3.49) can be rewritten as

s = −∮
S

(E × H). ds = ∫
V

(H.
⋅

B + E.
⋅

D + E. J)dV

The first equation on the left is the power into the material-negative IN, positive
OUT. The first term on the right is ohmic loss and the second term on the right is
the EM power.

In applying Poynting's theorem E and H must be causally related i.e both must
arise from the same EM source. Electric current (ac or dc) flowing towards a load
in a wire pair will have a magnetic field surrounding the wires coupled to an
electric field between the forward and return wires. This will give rise to a Poynting
Vector with direction towards the load and magnitude proportional to the power
dissipated in the load. A capacitor containing a steady charge Q and zero current
flow, placed in an external magnetic field, is a case where the Poynting vector is
zero.

3.3.1 Poynting's theorem – alternative derivation
The rate of flow of electromagnetic energy density (power) outwards from a
volume V is equal to the rate of decrease of the total energy



(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

(3.59)

(3.60)

(3.57)

(3.58)

p = − [ ε

2

∂E 2

∂t
+

μ

2

∂H 2

∂t
+ E. J]

where the first term is due to the energy density in the E and H fields and the
second term is Joule heating due to the current flow. Since ydy = dy2/2 then

p = − [εE.
∂E

∂t
+ μH.

∂H

∂t
+ E. J]

= − [E.
∂D

∂t
+ H.

∂B

∂t
+ E. J]

= − [E.(
∂D

∂t
+ J) + H.

∂B

∂t
]

Using Maxwell's equations J = ∇ × H −
⋅

D and ∇ × E = −
⋅

B. This gives

p = −[E.(
⋅

D + ∇ × H −
⋅

D) − H.(∇ × E]

Hence,

p = −[E.(∇ × H) − H.(∇ × E)]

Using a vector identity the latter equation becomes

p = ∇.(E × H)

Integrating (3.58) over the volume enclosing the energy and using the divergence
theorem gives

P = ∮
S

(E × H). ds

This is positive and equals the total flow of power out over the surface S of the
volume V. Integrating (3.54) over the same volume V gives

P = −∫
V

[E.
⋅

D + H.
⋅

B + E. J]dV

This is the same power but it is negative and represents the decrease in power
contained in the volume V. Equating (3.59) and (3.60) gives



(3.61)

(3.63)

(3.64)

(3.65)

(3.66)

(3.62)

∮
S

(E × H). ds = −[∫
V

(H.
⋅

B + E.
⋅

D + E. J)dV ]

which agrees with (3.49). This alternative approach assumes equations for the
energy density in the E and H fields and the Joule equation E.J. The previous
approach, [59], only assumed E.J as a dissipation source and derives Poynting's
theorem from this.

3.3.2 Superconductivity
The most widely used theories to describe superconductivity up to about 1986 were
the thermodynamic theory of Gorter and Casimir [52], the electromagnetic theory
of London and London [51], the theory based on second-order phase transitions by
Ginzburg and Landau [53], and superconductivity at a microscopic level due to
Bardeen et al. [54]. A general theory for the high-temperature superconductors
discovered in 1986 [55] remains to be fully developed.

In a superconductor which obeys London theory [51], the current density is
given by

Js = −qnsvs

where ns and vs are the supercarrier density and velocity respectively. Assuming no
collisions the equation of motion is

m⁎ dvs

dt
= −qE

Hence,

dJs

dt
= −qns

dvs

dt
=

q2ns

m⁎ E

This leads to London's First Equation

dJs

dt
=

E

Λ

where Λ = m⁎/(nsq
2) = μλ2

L and λL is the London penetration depth. The power
dissipated is then

pd = E. Jn + E. Js = E. Jn + ΛJs

dJs

dt



(3.67)

(3.68)

(3.69)

(3.71)

(3.73)

(3.74)

(3.70)

(3.72)

pd = E. Jn + E. Js = E. Jn +
Λ

2

dJ2
s

dt

The first term is due to dissipation of the normal fluid. The second term is due to
dissipation of the superfluid. This is time or frequency dependent and is zero in the
steady state. Poynting's equation (3.51) then becomes

s = ∫
V

[E. Jn + ΛJs.
⋅
Js + H.

⋅
B + E.

⋅
D]dV

For linear Ohmic materials this can be written as

s = ∫
V

J 2
n

σn

dV +
1

2

d

dt
∫
V

(εE 2 + μH 2 + ΛJ 2
s )dV

Thus, the supercurrent only contributes to the time dependent term or inertial term
of the power flow.

3.3.3 Complex Poynting vector
In this section we consider power flow in lossy materials where the applied field
varies sinusoidally with time defined by

E = Eo cos(ωt + θ), H = Ho cos(ωt + ϕ).

or

E = EoRe(e
j(ωt+θ)), H = HoRe(e

j(ωt+ϕ)).

The power flow is given by the real part of the Poynting vector

S = Re(E) ×Re(H) = (Eo × Ho)cos(ωt + θ)cos(ωt + ϕ)

=
1

2
(Eo × Ho)[cos(2ωt + θ + ϕ) + cos(θ − ϕ)]

The time average Poynting vector is

< S >=
1

T
∫

T

0
Sdt =

1

2
(Eo × Ho)cos(θ − ϕ)

since the time average of the first cosine term is zero. Put in terms of the phasors



(3.75)

(3.76)

(3.77)

(3.78)

(3.79)

(3.80)

(3.81)

(3.82)

(3.83)

Ê = Eoe
jθ, Ĥ = Hoe

jϕ

Hence,

< S >= Re
1

2
[Ê × Ĥ

⁎], < S >= Re
1

2
[Ê⁎ × Ĥ]

where * is the complex conjugate. Assuming a volume of material V bounded by
surface S, the total power flow out of S is

∮
S

< S>. ds = ∮
S

1

2
[Ê × Ĥ

⁎]. ds =
1

2
∫
V

∇.(Ê × Ĥ
⁎)dV

Using the vector identity

∇.(Ê × Ĥ
⁎) = Ĥ

⁎.(∇ × Ê) − Ê.(∇ × Ĥ
⁎)

and substituting for Maxwell's equations

∇ × Ê = −jωμĤ, ∇ × Ĥ
⁎ = Ĵ

⁎ − jωε⁎
Ê

⁎

gives

∇.(Ê × Ĥ
⁎) = −Ê. Ĵ

⁎ + jωε⁎
Ê. Ê

⁎ − jωμĤ. Ĥ
⁎

The first term on the right is due to joule heating and its time averaged value is

< pd >=
1

2
Ê. Ĵ

⁎

The time-averaged stored energy density in the electric and magnetic fields is

< wE >=
1

4
εÊ. Ê

⁎, < wH >=
1

4
μĤ. Ĥ

⁎

Hence

∇.(Ê × Ĥ
⁎) = −2<pd > −4jω[< wH > − < wE >]

and the power flow is



(3.84)

(3.86)

(3.87)

(3.88)

(3.89)

(3.90)

(3.91)

(3.85)

This is the complex Poynting equation, which relates the electromagnetic power
flowing through a surface S, the joule heat dissipation, and the difference in energy
stored in the electric and magnetic fields within the volume V of material. If there is
a power source Ps within the material, then this is added to the right-hand side of
this equation, which can then be written as

Ps = Pd + 2jω(WH − WE) + Po

where

Pd = −∫
V

< pd > dV

WH − WE = ∫
V

[< wH > − < wE >]dV

Po =
1

2
∮
S

Ê × Ĥ
⁎. ds

Example
A plane wave propagates in the z-direction in free space. The electric field is
E=100axVm−1. Determine the power density and its direction.

The time average Poynting vector

< S >= Re

1

2
[Ê × Ĥ

⁎]

gives the time average power density and its direction. The characteristic
impedance is

Zo =
Ex

Hy

where Zo=377Ω is the characteristic impedance of free space. Thus

ExHy = E 2
x/Zo

Hence,
1 1

∮
S

< S>. ds = 1
2 ∮

S
Ê × Ĥ⁎. ds

= − ∫
V

< pd > dV − 2jω ∫
V

[< wH > − < wE >]dV



(3.92)

(3.93)

(3.94)

(3.95)

(3.96)

(3.97)

(3.98)

< S >=
1

2
ExHyaz =

1

2
E 2

x/Zoaz

and

< S>=104/754 az=13.26 az, Wm−2

Hence, the power flow density is 13.26 Wm−2 in the z-direction of propagation.

3.3.4 Relaxation dependence
In general the conductivity, permittivity and permeability may be complex due to
relaxation dependence and become, respectively

σ = σ′+jσ′′, ε = ε′−jε′′, ε⁎ = ε′+jε′′, μ = μ′−jμ′′

The complex Poynting equation is then

If the field contains a source of power Ps then Poynting's equation becomes

or

Ps = ∫
V

pddV + 2jω∫
V

[< WH > − < WE >]dV +
1

2
∮
S

Ê × Ĥ
⁎. ds

Taking into account relaxation effects this becomes

If the material contains superconducting currents obeying London theory the
power becomes

∮
S

< S>. ds = 1
2 ∫

V
[(−σ′Ê. Ê⁎ − ωε′′Ê. Ê⁎ − ωμ′′Ĥ. Ĥ⁎)

+j(−σ′′Ê. Ê⁎ + ω(ε′Ê. Ê⁎ − μ′Ĥ. Ĥ⁎))]dV

∮
S

< S>. ds = 1
2 ∮

S
Ê × Ĥ⁎. ds

= Ps − ∫
V
pddV − 2jω ∫

V
[< WH > − < WE >]dV

Ps = 1
2 ∫

V
[σ′Ê. Ê⁎ + ω(ε′′Ê . Ê⁎ + μ′′Ĥ. Ĥ⁎)

+j(σ′′Ê. Ê⁎ + ω(μ′Ĥ. Ĥ⁎ − ε′Ê. Ê⁎))]dV + 1
2 ∮

S
Ê × Ĥ⁎. ds



(3.99)

(3.100)

(3.101)

(3.102)

(3.104)

(3.105)

(3.103)

where Λ = μλ2
L. Since μ is complex, μ = μ′−jμ′′, this leads to

3.4 Impedance

Defining the wave impedance as

Z(ω) =
Ê

Ĥ

, Ĥ =
Ê

Z(ω)
, Ê = ĤZ(ω)

then since Ĥ. Ĥ⁎ = H 2
o  and Ê. Ê⁎ = E 2

o

< Ps >=
H 2

o

2
Re[Z(ω)] =

E 2
o

2
Re[1/Z(ω)]

3.5 Complex voltage and current

Equations similar to Poynting's vector can be derived by considering complex
current and voltage dissipating power in a lossy circuit. In this, we assume the
quasistatic approximation with negligible radiation losses in which voltage v and
current i can be determined. By definition, the electrical power supplied is vi where

v = vocos(ωt + θ), i = iocos(ωt + ϕ)

v = Re[voe
j(ωt+θ)], i = Re[ioe

j(ωt+ϕ)]

v = Re[v̂ejωt], i = Re[̂iejωt]

where

Ps = 1
2 ∫

V
[σ′

nE
2 + ω(ε′′E 2 + μ′′H 2)

+jω(σ′′
nE

2ω−1 + ΛJ 2
s + μ′H 2 − ε′E 2)]dV + 1

2 ∮
S

Ê × Ĥ⁎. ds

Ps = 1
2 ∫

V
[σn′E

2 + ω(ε′′E 2 + μ′′H 2 + μ′′λ2
LJ

2
s )

+jω(σn′′E
2ω−1 + μ′λ2

LJ
2
s + μ′H 2 − ε′E 2)]dV + 1

2 ∮
S

Ê × Ĥ
⁎. ds



(3.106)

(3.107)

(3.114)

(3.115)

(3.116)

(3.117)

(3.108)

(3.109)

(3.110)

(3.111)

(3.112)

(3.113)

v̂ = voe
jθ, î = ioe

jϕ

The instantaneous power dissipated is

Pi = vi = Re[voe
j(ωt+θ)]Re[ioe

j(ωt+ϕ)]

Pi = voiocos(ωt + θ)cos(ωt + ϕ).

Using

cos[(A + B)/2]cos[(A − B)/2]=(cosA + cosB)/2

ωt + θ = (A + B)/2, ωt + ϕ = (A − B)/2

gives

A=2ωt + θ + ϕ, B = θ − ϕ

Pi = voio(cos A + cos B)/2

Pi = voio[cos (2ωt + θ + ϕ) + cos(θ − ϕ)]/2

The time average of the instantaneous power flow is

< Pi >=
1

T
∫

T

0
Pidt =

voio

2
cos(θ − ϕ) = Re[ voio

2
ej(θ−ϕ)]

since the time average of the first cosine term is zero. Hence,

< Pi >=< vi >=
1

2
Re[v̂̂i⁎] =

1

2
Re[v̂⁎î]

where

v̂ = voe
jθ, v̂⁎ = voe

−jθ, î = ioe
jϕ, î⁎ = ioe

−jϕ

3.5.1 Alternative analysis
Equation (3.105) can be expressed as

v = (v̂ejωt + v̂⁎e−jωt)/2, i = (̂iejωt + î⁎e−jωt)/2

Proof:



(3.118)

(3.118)

(3.121)

(3.122)

(3.123)

(3.124)

(3.120)

(3.125)

(3.126)

i = (̂iejωt + î⁎e−jωt)/2

= io[cos(ωt + ϕ) + jsin(ωt + ϕ)]/2 + i⁎
o[cos(ωt + ϕ) − jsin(ωt + ϕ)]/2

= iocos(ωt + ϕ), qed

The instantaneous power dissipated is

Pi = vi = (v̂ejωt + v̂⁎e−jωt)(̂iejωt + î⁎e−jωt)/4

= (v̂̂ie2jωt + v̂̂i⁎ + v̂⁎î + v̂⁎î⁎e−2jωt)/4

The time average of the instantaneous power flow is

< Pi >=
1

T
∫

T

0
Pidt = (v̂̂i⁎ + v̂⁎î)/4

since the time average of the first and fourth periodic terms are zero. Hence,
assuming v̂̂i⁎ = v̂⁎î

< Pi >= Re(v̂̂i⁎)/2=Re(v̂⁎î)/2

3.5.2 Impedance
Define the impedance as

Z(ω) =
v̂

î
, î =

v̂

Z(ω)
, v̂ = îZ(ω)

Then, since ̂îi⁎ = i2
o and v̂v̂⁎ = v2

o

< Pi >=< vi >=
i2
o

2
Re[Z(ω)] =

v2
o

2
Re[1/Z(ω)]

3.6 Power dissipation in an LCR circuit

For a general series L, C, R circuit the power applied to the circuit = the power
absorbed by the circuit



(3.128)

(3.129)

(3.130)

(3.131)

(3.132)

(3.127)vi = vLiL + vCiC + vRiR

where IL = iR. The basic equations for L, C and R are

vL = L
diL

dt
, iC = C

dvC

dt
, vR = iRR

The power dissipated in each component

iLvL = iLL
diL

dt
=

d

dt
(Li2

L/2), iCvC = CvC
dvC

dt
=

d

dt
(Cv2

C/2), iRvR = i2
RR

[Note : If ydy = dy2/2, then ∫ ydy = ∫ dy2/2, i.e. y2/2=y2/2]

The power dissipated is then

vi =
d

dt
(Li2

L/2) +
d

dt
(Cv2

C/2) + i2
RR

This immediately shows that the energy stored in the E and H fields is

WH =
1

2
Li2

L, WE =
1

2
Cv2

C

An example of Poynting vector and dc Power flow in a co-axial cable is given
by Parton et al. [20].



Chapter 4
The Skin Effect – introduction

4.1 Introduction

The solution of Maxwell's equations for periodic electromagnetic fields
incident on conducting materials gives rise to modified wave equations
(Helmholtz equations) (2.50) and (2.54). These equations yield periodic
fields resulting from the second derivative and diffusion fields due to the
first derivative term. The result combines to give periodic electromagnetic
amplitudes, which decrease exponentially from the surface as the wave
penetrates into the conductor. Because the fields E, H, J and vector
potential A obey similar Helmholtz equations, these fields will all be
expected to diffuse from the surface with amplitudes decreasing smoothly
as they penetrate the conductor. The depth of penetration is found to
decrease as the frequency increases. At very high frequencies in the region
of microwaves, the depth of penetration is of the order of micrometers. The
variation of the depth of penetration of the EM fields is referred to as The
Skin Effect. At microwave frequencies, the skin depth may be less than one
micrometer. Hence, only a thin film of high conductivity silver or gold
coated onto a rigid substrate is necessary for low-loss microwave
applications. Since the microwaves only penetrate into the silver, a less
costly substrate material can be used. Although, as we show further on (4.2)
high conductivity (low resistivity) metals lead to lower skin depth. This
effect is compensated for by the low loss in these conductors.

Although the term Skin Effect was originally intended to refer to the
shallow depth of wave penetration at high frequencies, it tends to be used



more generally to include any depth of penetration if the cause is the same
as for microwaves. Hence, even at low frequencies, the Skin Effect can be
important. In copper at 50 Hz, the penetration depth is δ=9.28 mm and
δ=8.47 mm at 60 Hz. Thus, in high power applications, it is a waste of
copper to increase the radius above about 1 cm and hollow metal tubes can
be used. The skin depth is also inversely proportional to the magnetic
permeability μr. Hence, if conductors are employed that have high μr, steel,
for example, then the skin depth will be reduced further as shown in Figure
4.3.

4.2 Skin Effect – a brief history

The notion of the Skin Effect essentially follows closely that of the
developments in electromagnetism and radio engineering in particular,
[45,60,61,69,70]. Although James Clerk Maxwell had earlier determined
the equations for the penetration of an EM field into a cylindrical conductor,
the term Skin Effect was not used until later. See references [3] and
footnotes by J.J. Thomson and [62]. Some of the earliest experiments on the
Skin Effect were carried out by Sir Ambrose Fleming [63]. Later, Arthur
Kennelly and his co-workers used a large copper wire meander for
measuring the Skin Effect in solid round copper wires [65]. Kennelly's
work extended earlier measurements performed by Fleming [63]. These
experimental measurements confirmed that if the current is alternating the
solution of Maxwell's equations shows that inside the conductor the EM
fields obey a diffusion law. The current density decreases towards the centre
of the conductor and decreases more sharply as the frequency increases.
Thus, because the cross-sectional area of the current path is reduced, the
high frequency resistance of the conductor increases with frequency
according to the well-known result, Rac ∝ √f; a process generally referred
to as the Skin Effect. This leads to increased losses as the frequency
increases. This was very important in the early years of radio engineering
and practical details were discussed widely in the literature [45].

During the subsequent years, there has been a large volume of literature
on the theory and modelling of the Skin Effect [41,66]. In comparison, there
seems to have been very few papers concerned with directly measuring the



Skin Effect in simple conductors particularly at low frequencies. But
MacDougal set up some nice low-cost experiments for demonstrating the
Skin Effect to undergraduates [64]. Authors of theoretical papers frequently
refer to the experimental results of Kennelly [67,68]. However, Kennelly's
ac resistance measurements were limited to eight data points obtained
between 10 kHz and 100 kHz [65].

4.3 General description of the Skin Effect

The mathematical theory does not provide a physical explanation of the
diffusion mechanism, only that it is a result of the solution of Maxwell's
equations. By comparison, the diffusion of gases is explained by the atoms
or molecules moving from a higher concentration to a lower concentration
due to random collisions. But what is the mechanism for electric and
magnetic field diffusion? A classical physical explanation of the Skin
Effect, [45,59,69], is that when alternating current flows in a conductor, the
variation in magnetic field induces secondary currents, Eddy Currents,
which increase with increasing frequency. These oppose the externally
applied supply current in accordance with Lenz's law. In the case of
cylindrical conductors or wires, the amount of magnetic flux linking the
conductor is higher at the centre of the conductor than the surface, Figure
4.1(a). This reduces the supply current in the centre of the conductor,
increasing its resistance, which increases further as the frequency increases.
In the case of a rectangular conducting bar or strip, the greatest
concentration of flux lines is in the centre, decreasing at the corners and the
surface. This gives the largest current densities at the surfaces, followed by
the corners and the least along the central axis of the conductor as for the
cylindrical conductor, Figure 4.1(b). However, in the rectangular case a
more detailed analysis shows that the field lines follow complex patterns at
the corners than is shown in this figure. This is not the case for the
cylindrical geometry which is more ideal for analytical purposes.



Figure 4.1 Flux lines in (a) cylindrical conductor, (b) rectangular
conductor. The field line patterns in the corners are
more complex than shown.

These interpretations may also be considered in terms of the wire self-
inductance L. The wire self-inductance is defined as the ratio of the
magnetic flux Ψ linking the conductor to the current I, that is, L = Ψ/I. If the
flux linking the conductor is less at the surface compared with inside the
conductor, then the self-inductance is higher inside the conductor compared
with outside. The reactance, ωL, is therefore higher inside the conductor
and the current is redistributed towards the surface. Again, the effect is
more significant as the frequency increases.

If the mean free path of the conduction electrons ln approaches the field
penetration depth then the classical Skin Effect theory breaks down and the
nature of the penetration is referred to as the Anomalous Skin Effect [72].
This normally occurs at high frequencies since, as mentioned, the skin
depth decreases with increasing frequency and eventually δ → l. In
addition, the atomic and electronic structure of solid surfaces may deviate
considerably from the bulk properties. In the classical treatment, Maxwell's
equations do not consider the microscopic nature of matter, only
macroscopic fields averaged over a large number of atomic dimensions.

In general, it is not possible to obtain simple analytical equations for the
Skin Effect in an arbitrary shaped conductor such as for example complex
shaped transformer laminations or complex geometries in microwave
circuits. For such problems the diffusion equations are solved using field
plots and numerical methods [20,71,110]. Analytical solutions can,
however, be obtained for simple geometries such as cylindrical wire



(4.1)

(4.2)

(4.3)

conductors and rectangular conductors. First, however, we consider a
simplified method of analysis. This is followed by a more detailed analysis
using Bessel functions.

4.4 Conducting half-space

To illustrate the Skin Effect, consider a good conductor such as copper
where σ

ωε
≥ 10. The transverse electromagnetic (TEM) wave travelling in

the z-direction is incident on the conductor, which extends to infinity in the
positive x, y and z dimensions, that is, half-space. The electric field is
defined by Ex = Eo cos(ωt). Inside the conductor this becomes (c.f.
(2.84))

Ex = Eoe
−(α+jβ)z cos(ωt)

For a good conductor we found that α = β=1/δ where

δ=1/α = √ 2

ωμσ

Hence, we can write

Ex = Eoe
−z/δ cos(ωt − z/δ)

The penetration depth δ has dimensions of metres and is known as the
Skin Depth. This corresponds to the distance the wave propagates before its
amplitude decays to e−1 (about 37 per cent) of its maximum value, Figure
4.2.



Figure 4.2 Current density variation with distance into a good
conductor

Figure 4.3 Skin depths for a number of metals



(4.4)

(4.5)

(4.6)

The magnetic field is

Hy =
Eo

∣ Z ∣
e−z/δ cos(ωt − z/δ − π/4)

where for a good conductor the impedance is

Z =
1 + j

√2
√ωμ/σ =

1 + j

σδ

which gives ϕ=45∘. The current density is taken as Jx = σEx. Hence this
becomes,

Jx = σEoe
−z/δ cos(ωt − z/δ) = Joe

−z/δ cos(ωt − z/δ)

where Jo is the current density at the surface of the conductor where z=0.
The current density therefore diffuses into the conductor decreasing
exponentially with distance from Jo at the surface (z=0) to Joe−1=0.368Jo at
z = δ. From (4.2), the skin depth decreases with increasing frequency, so
that the Skin Effect becomes particularly important at very high
frequencies, Figure 4.3. In this case, the decreasing skin depth for a given
conductivity, leads to an enhanced surface impedance as shown by (4.5).

4.5 Approximate methods

By assuming that most of the ac resistance increase occurs for one skin
depth then the Skin Effect can be used to estimate the increase in resistance
due to EM diffusion. This analysis is approximate because the resistance
decreases exponentially from the surface of the conductor. One skin depth
accounts for 67 per cent of this resistance change from the surface, z=0 to z
= δ. A more detailed analysis requires the solution of the Helmholtz
equations for the particular conductor geometry and boundary conditions
concerned. This is considered further on in the text.



(4.7)

(4.8)

(4.9)

(4.10)

4.5.1 Cylindrical wire
Consider first a cylindrical conducting wire radius a, length l and skin depth
δ, Figure 4.4(a). The d.c. resistance is

Rdc =
ρl

A

Figure 4.4 Sections through (a) circular conductor and (b)
rectangular conductor. Both conductors have length l
perpendicular to the page

where A is the cross-sectional area of the conducting region. For the full
conductor A1 = πa2. For the full conductor, less skin depth A2 = π(a − δ)2.
The area for a one skin depth conducting path is a tube with cross-sectional
area

Ad = A1 − A2 = π[a2 − (a − δ)2]

The ac resistance becomes

Rac =
ρl

Ad

=
ρl/(πa2)

1 − ( a−δ
a
)

2

or

Rac

Rdc
=

1

1 − ( a−δ
a
)

2
=

1

1 − (1 − δ/a)2



Hence, if δ = a then Rac = Rdc. If δ ≪ a then Rac ≫ Rdc. See Figure
4.5

Figure 4.5 Variation of ac resistance Rac/Rdc with skin depth δ/a

4.5.2 Rectangular conductor
Rectangular conductor geometries occur in thin film circuits, microwave
striplines and low-frequency power transmission lines. Consider a
rectangular conductor with width w, depth d and length l, Figure 4.4(b).
Assume that the conducting region is due to only a skin depth δ. In this
figure, the conducting sectional areas 1–4 clockwise from the top are



(4.12)

(4.13)

(4.11)

(4.14)

(4.15)

(4.16)

(4.17)

Ar = wδ + (d − 2δ)δ + wδ + (d − 2δ)δ=2δ(w + d − 2δ)

The ac resistance due to one skin depth becomes

Rac =
ρl

2δ(w + d − 2δ)

or

Rac

Rdc

=
wd

2δ(w + d − 2δ)

If δ = w/2=d/2 then Rac = Rdc. If δ ≪ w ≪ d then Rac

Rdc
= wd

2δ(w+d)
.

4.5.3 Tubular conductor
Consider a cylindrical tubular conductor outside radius a, internal radius b,
length ł and skin depth δ.

The area for a one skin depth conducting path is a tube with cross-
sectional area

Ad = π[a2 − (a − δ)2] = π(2aδ − δ2)

The ac resistance becomes

Rac =
ρl

Ad
=

ρl

π(2aδ − δ2)

The dc resistance is

Rdc =
ρl

π(a2 − b2)

Hence, the ratio of ac to dc resistance of the tube for one skin depth is

Rac

Rdc

=
a2 − b2

2aδ − δ2



4.6 Methods of reducing Skin Effect

One method of reducing the Skin Effect in a conductor is to use several
parallel wires insulated from each other, twisted together and shorted at
each end. The total resistance is then approximately RT = R/n, where R is
the resistance of one wire and n the number of wires. This arrangement is
known as litz wire or ‘Litzendraht’ conductor, and is useful for frequencies
up to about 500 kHz. The advantages become less at frequencies beyond 2
MHz due to irregularities in the twisted wires and capacitance between the
strands, [45] p. 37. Generally stranded conductors have a large surface area
than single conductors, which reduces the Skin Effect. In printed circuit
boards (PCBs) thicker copper layers or multiple layers are used to decrease
the conducting plane resistance and Skin Effect. A further method recently
reported suggests reducing the Skin Effect with a micro metre-scale gridded
fibre structure with currents arranged in a checkered pattern [50].

Although the skin depth is proportional to the resistivity of the
conductor (see (4.2)) increasing the resistivity will increase the power
losses. Hence low resistivity high conductivity metals such as copper or
silver are used to keep losses low. Equation (4.2) also shows that the skin
depth is inversely proportional to the wire permeability and frequency.
Hence, low permeability materials are chosen. Higher frequencies clearly
lead to a decrease in skin depth. However, the choice of frequency depends
on many other factors, so Skin Effect may not be the only consideration.



Chapter 5
Cylindrical conductor – axial alternating

current

5.1 Introduction

An ac generator supplies a constant current I = Ioejωt parallel to the z-axis
of a solid cylindrical conductor or wire, length l, radius a and uniform
resistivity ρ. In the case of a steady state (dc), the current is distributed
uniformly across the section of the conductor, and the current density is
simply given by J = I/(πa2) [75]. For alternating currents, the current
density is no longer uniform but is a function of the conductor radius r and
can be described by J(r, t) = J(r)ejωt. The following analysis is primarily
concerned with the current flow within the conductor. Current leakage and
flow outside the conductor are not explicitly included. However, some
consideration is given to the external inductance, which can have a large
effect on the impedance.

5.2 The electric and magnetic fields from
Maxwell's equations

The electric and magnetic fields are determined from Maxwell's equations.
The analysis initially leads to the Helmholtz Wave Equations or Equations



(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

(5.7)

(5.6)

of Telegraphy which are the sum of wave and diffusion equations. These
finally give, for the E and H fields, zero-order and first-order Bessel
functions of the first kind, respectively, with complex arguments. The
Helmholtz Wave Equations were derived previously, page 32, (2.50) and
(2.54) repeated here as

∇2
E = μσ

∂E

∂t
+ με

∂ 2E

∂t2
+ ∇(ρv/ε)

∇2
H = μσ

∂H

∂t
+ με

∂ 2
H

∂t2

For conductors like copper, the ratio of conductivity to permittivity is
(σ/εo ≈ 1019). Therefore, the second derivative term for Hϕ in (5.2) is
neglected, and for good conductors, the Helmholtz equation for the
magnetic field becomes only a diffusion equation

∇2
H = μσ

∂H

∂t

Generally, for cylindrical conductors the components of the vector
Laplacian are [6] (p. 92)

∇2
Sρ = ∇2Sρ −

Sr

ρ2
−

2

ρ2

∂Sϕ

∂ϕ

∇2
Sϕ = ∇2Sϕ −

Sϕ

ρ2
+

2

ρ2

∂Sρ

∂ϕ

∇2
Sz = ∇2Sz

5.2.1 Electric field
The electric field is in the z-direction and the scalar equation (with r = ρ) is
[20] (p. 256)

∇2Ez =
1

r

∂

∂r
(r ∂Ez

∂r
) +

1

r2

∂ 2Ez

∂ϕ2
+

∂ 2Ez

∂z2



(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

With no variation of Ez with ϕ or z then

∇2Ez =
1

r

∂

∂r
(r ∂Ez

∂r
) =

1

r

∂Ez

∂r
+

∂ 2Ez

∂r2
= μσ

∂E

∂t

Hence,

∂ 2Ez

∂r2
+

1

r

∂Ez

∂r
− μσ

∂Ez

∂t
=0

5.2.2 Magnetic field
In this case for Hϕ with r = ρ no variation with ϕ and from (5.5) the vector
Laplacian is

∇2
Hϕ = ∇2Hϕ −

Hϕ

r2

The scalar Laplacian for Hϕ is [20]

∇2Hϕ =
1

r

∂

∂r
(r

∂Hϕ

∂r
) +

1

r2

∂ 2Hϕ

∂ϕ2
+

∂ 2Hϕ

∂z2

With no variation of Hϕ with ϕ or z then

∇2Hϕ =
1

r

∂

∂r
(r

∂Hϕ

∂r
) =

1

r

∂Hϕ

∂r
+

∂ 2Hϕ

∂r2

Hence,

∇2Hϕ =
∂ 2Hϕ

∂r2
+

1

r

∂Hϕ

∂r
−

Hϕ

r2
= μσ

∂Hϕ

∂t

An alternative solution is given in Appendix.



(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

5.3 Sine waves

For sine waves, ∂/∂t = jω (5.13) and (5.9) become, respectively

∂ 2Hϕ

∂r2
+

1

r

∂Hϕ

∂r
− ( 1

r2
+ jωμσ)Hϕ=0

∂ 2Ez

∂r2
+

1

r

∂Ez

∂r
− jωμσEz=0

Putting

u = mrj3/2, m = √(ωμσ)

∂ 2Hϕ

∂u2
+

1

u

∂Hϕ

∂u
+ (1 − 1/u2)Hϕ=0

∂ 2Ez

∂u2
+

1

u

∂Ez

∂u
+ Ez=0

Bessel's equation order v is

d2y

dx2
+

1

x

dy

dx
+ (1 − v2/x2)y=0

Comparing this with (5.17) and (5.18) gives v=1 and v=0, respectively.
Hence the H and E fields are given by first-order and zero-order Bessel
equations, respectively, with complex argument u.

From (5.106)

Hϕ =
Io

2πa

J1(u)

J1(ua)
= kJ1(u)

where J1 is a first-order Bessel function with complex argument u given by
(5.16) and ua with r = a. Io is the current amplitude and k = Io/(2πaJ1(ua)).
Substituting (5.20) in (5.17)



(5.22)

(5.23)

(5.21)

(5.25)

(5.26)

(5.27)

(5.24)

y = J ′′
1 + J ′

1/u + J1 − J1/u2

Now

J ′
1 = Jo − J1/u, J ′′

1 = J ′
o − J ′′

1 /u + J1/u2

Thus,

y = J ′
o − J ′

1/u + J1/u2 + J ′
1/u + J1 − J1/u2 = J ′

o − J1

But J ′
o = −J1. Hence, y=0 as expected.

5.4 The current density

For a good conductor with current flowing in the z-direction, and assuming
the displacement current is zero, then

Jz = σEz, Ez = ρJz

Equation (5.9) becomes

∂ 2Jz

∂r2
+

1

r

∂Jz
∂r

− μσ
∂Jz
∂t

=0

5.4.1 Sine waves

For sine waves, Jz(r, t) = Jzejωt and ∂/∂t = jω, (5.25) becomes

∂ 2Jz

∂r2
+

1

r

∂Jz
∂r

− jωμσJz=0

Putting

u = mrj3/2, m = √(ωμσ)



(5.28)

(5.29)

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)

(5.30)

∂ 2Jz

∂u2
+

1

u

∂Jz
∂u

+ Jz=0

Bessel's modified equation order v for a function Zv(u) is defined by

∂ 2Zv(u)

∂u2
+

1

u

∂Zv(u)

∂u
+ (u2 − v2)Zv(u)=0

Comparing this with (5.28) gives v=0. Hence J and E fields are given by
a zero-order Bessel equation with complex argument u, where u = mrj √ j.
The general solution is given by

Zv(u) = AJv(u) + BNv(u)

where Jv(u) and Nv(u) are Bessel functions of the first and second kind,
respectively, with order v. Jv(u) are obtained from a series solution of the
Bessel equation [6] where

Jv(u) =
∞

∑
s=0

(−1)s

s!(v + s)!
(u/2)v+2s

Jv(u) = (u/2)v[
1

v!
−

(u/2)2

1!(v + 1)!
+

(u/2)4

2!(v + 2)!
−

(u/2)6

3!(v + 3)!
+ ⋯

=
1

π
∫

π

0
cos(nθ − u sin θ) dθ

Nv(u) =
Jv(u) cos vπ − J−v(u)

sin nπ

The Bessel functions of order zero is

The Bessel functions of order one is

Jo(u) =1 −
(u/2)2

(1!)2 +
(u/2)4

(2!)2 −
(u/2)6

(3!)2 + ⋯

= 1
π
∫ π

0 cos(u sin θ) dθ ⇒ 1, u ⇒ 0



(5.36)

(5.38)

(5.39)

(5.41)

(5.42)

(5.37)

(5.40)

J1(u) =
u

2
−

(u/2)3

1!2!
+

(u/2)5

2!3!
−

(u/2)7

3!4!
+ ... ⇒ 0, u ⇒ 0

Expansion of the series shows that at the origin Jv(u) is zero but Nv(u)
is infinite. In our case (5.28), the order v=0. A physical solution for this
case is therefore

J(u) = AJo(u), J(a) = AJo(ua)

and the constant A has to be determined. At the boundary of the conductor,
r = a, where ua = amj√j. Taking the ratio of these two equations
eliminates A. Hence,

J(u, t) = J(a)
Jo(u)

Jo(ua)
ejωt

Equation (5.28), then becomes

∂ 2Jo

∂u2
+

1

u

∂Jo
∂u

+ Jo=0

Putting this as

J ′′
o + J ′

o/u + Jo=0

where the primes ' and '' refer to the first and second derivative of u
respectively and since J ′

o = −J1 and J ′′
o = −(Jo − J1/u), then y=0 as

expected.
Ja in (5.38) is not easily measured in practice. We, therefore, consider

the following. The ac generator supplies a current I = Ioejωt. The current
amplitude is then

Io = ∫
s

J. ds = A ∫
a

0
Jo(u)2πrdr

Io =
2πA

(mj3/2)
2
∫

ua

0
uJo(u)du



(5.43)

(5.44)

(5.45)

(5.46)

(5.47)

(5.48)

Using the identity ∫uJo(u)du = uJ1(u)

Io =
j2πA

m2
uaJ1(ua)

A =
m2Io

j2πuaJ1(ua)
=

mIo

j3/22πaJ1(ua)

Substituting for A in (5.37)

J =
j3/2mIo

2πa

Jo(u)

J1(ua)
=

Io

πa2

ua

2

Jo(u)

J1(ua)

Hence, the current density is

J = Jdc
ua

2

Jo(u)

J1(ua)
, Jdc =

Io

πa2

For r = a

Ja = Jdc
ua

2

Jo(ua)

J1(ua)

As ω → 0,Jo(u) → 1,J1(ua) → ua/2 and J(r) → I
πa2 = J (r); the

average or dc current density, (see following section).

5.4.2 Average current density
The average current density is defined by

J (r) =
2

a2
∫

a

0
rJ(r)dr

Thus, if the current density in the specimen Jint is uniform and constant
then the average internal current density is J =(2/a2)Jint[a

2/2]=Jint as
expected. Substituting for the current density (5.45) gives

¯

¯

¯



(5.49)

(5.50)

(5.51)

(5.52)

(5.53)

(5.55)

(5.56)

(5.54)

J (r) =
2

a2

j3/2mIo

2πaJ1(ua)
(mj3/2)

−2 ∫
ua

0
uJo(u)du

Using the identity

∫ uJo(u)du = uJ1(u)

gives

J (r) =
2

a2

j3/2mIo

2πaJ1(ua)
(mj3/2)

−2
uaJ1(ua)

J (r) =
j3/2mIo

2πaJ1(ua)

2

ua
J1(ua)

Thus

J (r) =
Io

πa2
= Jdc

The average current density is therefore the total applied current divided
by the cross-sectional area of the wire as expected. This is the same as the
steady-state dc current density Jdc.

5.4.3 Kelvin equations
The current density may also be expressed in terms of Kelvin functions

Jo(u) = bero(mr) + jbeio(mr)

J1(u) = −
Jo(u)

du
= −

dJo(u)

j3/2d(mr)
= j2j−3/2 dJo(u)

d(mr)
= j1/2 dJo(u)

d(mr)

Thus,

J1(ua) = j1/2[ber′
o(ma) + jbei′

o(ma)]

¯

¯

¯

¯



(5.57)

(5.58)

(5.59)

(5.60)

(5.61)

(5.62)

(5.63)

(5.64)

Hence,

J = ( j3/2mIo

2πa
) bero(mr) + jbeio(mr)

j1/2[ber′
o(ma) + jbei′

o(ma)]

J = (mIo

2πa
)j bero(mr) + jbeio(mr)

[ber′
o(ma) + jbei′

o(ma)]

J = (mIo

2πa
) −beio(mr) + jbero(mr)

[ber′
o(ma) + jbei′

o(ma)]

J = (mIo

2πa
) bero(mr) + jbeio(mr)

[bei′
o(ma) − jber′

o(ma)]

where from (5.43)

Io =
−j2πAa

m
[ber′o(ma) + jbei′o(ma)]

or

Io =
2πAa

m
[bei′o(ma) − jber′o(ma)]

Rationalising (5.60) gives the real and imaginary components of current
density

Re(J) = (mIo

2πa
) bero(mr)bei′o(ma) − beio(mr)ber′o(ma)

ber′2
o (ma) + bei′2

o (ma)

Im(J) = (mIo

2πa
)
bero(mr)ber′o(ma) + beio(mr)bei′o(ma)

ber′2
o (ma) + bei′2

o (ma)

The final current density may be written in terms of the amplitude and
phase angle since for any two complex numbers z1 and z2 we can divide
their moduli and subtract their arguments, that is, z1/z2 = (r1/r2)arg(ϕ1 −
ϕ2). Hence,



(5.65)

(5.66)

(5.67)

(5.68)

(5.69)

(5.70)

J(t) = (mIo

2πa
)√ ber2

o(mr) + bei2
o(mr)

ber′2
o (ma) + bei′2

o (ma)
ej(ωt+ϕ)

where the phase angle is

ϕ = ϕ1 − ϕ2 = tan−1 beio(mr)

bero(mr)
− tan−1 ber

′
o(ma)

bei′
o(ma)

5.5 Axial impedance

Let the axial impedance of the wire be defined by

Z(r) =
V (r)

I

where V(r) is the potential difference along the wire and I the total supply
current. V(r) is defined by

V (r) = −∫
l

E(r). dl

where E(r) is the axial electric field given by

−E(r) = ∇Vi(r) +
∂A(r)

∂t

Vi(r) is the pd due to the internal properties of the conductor defined by
r≤a. A(r) is the vector magnetic potential arising from the alternating
current. This is given by A(r) = Aint(r) + Aext(r) with internal and external
values, respectively. Substituting (5.69) into (5.68) gives the impedance

Z(r) = −
1

I
∫
l

E(r). dl =
1

I
∫
l

[∇Vi(r) +
∂A(r)

∂t
]. dl



(5.71)

(5.72)

(5.73)

(5.74)

(5.75)

(5.76)

(5.77)

Z(r) =
1

I
∫
l

∇Vi(r). dl +
1

I
∫
l

∂A(r)

∂t
. dl

The first term on the rhs of (5.71) is the impedance due to the internal
properties of the conductor. The second term is the contribution from the
wire inductance. We consider these contributions in turn.

5.5.1 Internal impedance term
Noting that in the first term in (5.71)

∇Vi(r) =
∂Vi(r)

∂l

then the first term simply integrates to

Zi(r) =
Vi(r)

I
, r ≤ a

The current density at a is

J = σEi(r) = σ
Vi(r)

l
, Vi(r) = lρJ(r)

Thus,

Zi(r) = ρl
J(r)

I

From (5.45) with J determined at a

J(r)/I =
j3/2m

2πa

Jo(ua)

J1(ua)

Substitute in (9.21), and since m = √2/δ, then

Zi(r) =
j3/2√2ρl

2πaδ

Jo(ua)

J1(ua)



(5.78)

(5.79)

(5.80)

(5.81)

(5.82)

Since the dc resistance is Rdc = ρl/(πa2) then the internal impedance
may be written as

Zi = Rdc

j3/2a

√2δ

Jo(ua)

J1(ua)

or

Zi = Rdc

ua

2

Jo(ua)

J1(ua)

If δ ≪ a then 2πaδ is the cross-sectional area of a tube with thickness δ.
The resistance of such a tube is

R1 =
ρl

2πaδ

As ω → 0,Z → Rdc as expected. Note that the factor I cancels in the
impedance calculation, so that no a priori knowledge of the applied current
is required.

5.5.2 Average axial impedance
The axial impedance averaged spatially over the conductor radius is defined
by

Z i =
2

a2
∫

a

0
rZi(r)dr

Substituting for (5.79) gives the average axial impedance as equal to the
dc resistance

Z i = Rdc

5.5.3 Axial impedance and Kelvin functions
The Kelvin functions can be introduced by substituting the current density
given by (5.60) into (5.75) to give

¯

¯



(5.83)

(5.84)

(5.85)

(5.86)

(5.87)

(5.88)

Zi =
mlρ

2πa

[bero(mr) + jbeio(mr)]

[bei′o(ma) − jber′o(ma)]

Substituting mlρ

2πa = Rdca

√2δ
 (as in (5.79)) then

Zi =
Rdca

√2δ

[bero(mr) + jbeio(mr)]

[bei′o(ma) − jber′o(ma)]

This is similar to Marion and Heald, (5.85), [78] except that the signs
are reversed in numerator and denominator. This is because they use an
“unconventional” negative sign.

The final impedance may be written in terms of the amplitude and phase
angle since as before, for any two complex numbers z1 and z2, we can
divide their moduli and subtract their arguments, that is, z1/z2 =
(r1/r2)arg(ϕ1 − ϕ2). Hence,

Zi(r) =∣ Zi ∣ ejϕ

where the amplitude is

∣ Zi ∣=
Rdc

√2

a

δ
√ ber2

o(mr) + bei2
o(mr)

ber′2
o (ma) + bei′2

o (ma)

and the phase angle is

ϕ = ϕ1 − ϕ2 = tan−1 beio(mr)

bero(mr)
− tan−1 ber

′
o(ma)

bei′
o(ma)

Also the quadrature components are

Re(Zi) =∣ Zi ∣ cos ϕ, Im(Zi) =∣ Zi ∣ sin ϕ

Kelvin functions are useful for expressing the real and imaginary
components yielding the ac resistance, reactance and inductance and
allowing these to be compared with experimental measurements. Hence,
rationalising (5.84), the real and imaginary parts are



(5.89)

(5.90)

(5.91)

(5.92)

(5.93)

(5.94)

Re(Zi) =
aRdc

√2δ

bero(mr)bei′o(ma) − beio(mr)ber′o(ma)

ber′2
o (ma) + bei′2

o (ma)

Im(Zi) =
aRdc

√2δ

bero(mr)ber′o(ma) + beio(mr)bei′o(ma)

ber′2
o (ma) + bei′2

o (ma)

The internal inductance is Li = Im(Zi)/ω or

Li =
aRdc

ω√2δ

bero(mr)ber′o(ma) + beio(mr)bei′o(ma)

ber′2
o (ma) + bei′2

o (ma)

In terms of Bessel functions

Li =
Im(Zi)

ω
=

Rdc

ω
Im( ua

2

Jo(ua)

J1(ua)
)

In a following chapter, the internal inductance is also calculated by
considering the energy in the magnetic field. The following chapter also
includes experimental measurements of the internal inductance.

5.6 Appendix

5.6.1 Induced magnetic field
The magnetic field arising from the applied current is obtained from
Maxwell's equation

curl E = −
∂B

∂t

In cylindrical co-ordinates

∇ × E = ( 1
ρ

∂Ez

∂ϕ −
∂Eϕ

∂z )aρ + ( ∂Eρ

∂z − ∂Ez

∂ρ )aϕ

+ 1
ρ
( ρ∂Eϕ

∂ρ −
∂Eρ

∂ϕ )az



(5.95)

(5.96)

(5.97)

(5.98)

(5.99)

(5.100)

(5.101)

In this case,

∂Ez

∂ϕ
=

∂Eϕ

∂z
=

∂Eρ

∂z
=

∂Eϕ

∂ρ
=

∂Eρ

∂ϕ
=0

Hence, for sine waves and putting ρ = r

curl E = −
∂Ez

∂r
aϕ = −jω(Bρaρ + Bϕaϕ + Bzaz) = −jωBϕaϕ

This shows that Bρ and Bz must be zero. Since the partial derivative may be
replaced by a single variable derivative then

Bϕ =
1

jω

dEz

dr

The electric field can be obtained from the applied current by Ez = ρJz
where ρ is the conductor resistivity, assumed independent of E. The current
density, (5.38) in (5.105) is

Jz = Ja
Jo(u)

Jo(ua)

where Ja is the current density at the cylinder surface r = a and 
ua = amj√j. Substituting Ez for Jz in (5.97) gives

Bϕ =
ρ

jω

dJz

dr

Bϕ = j1/2 ρmJa

ωJo(ua)

dJo(u)

du

Using the Bessel identity dJo(u)/du = − J1(u), gives

Bϕ = −(j1/2)
ρmJa

ω

J1(u)

Jo(ua)
, r ≤ a.



(5.102)

(5.103)

(5.104)

(5.105)

(5.106)

or

Bϕ =
μaJa

ua

J1(u)

Jo(ua)

At low frequencies or u ≪ 1, Jo(u)=1 and J1(u) = u/2, then (5.101)
becomes

Bϕ =
μIor

2πa2
, r ≤ a.

This agrees with vector potential calculations for the dc case [20].
Generally, for x<1, J1(x)/Jo(x) ≈ x/2 [91]. For the ac case, if r = a and ua≤1,
then (5.101) becomes

Bϕ = μJa/2=
μIo

2πa

5.6.2 Alternative expression for Bϕ

Ja is given by (5.47)

Ja =
Io

πa2

ua

2

Jo(ua)

J1(ua)

Substituting this into (5.102) gives

Bϕ =
μIo

2πa

J1(u)

J1(ua)
, r ≤ a.

This equation agrees with the expression given by J. J. Thomson's footnotes
in Maxwell's book, after converting their units to SI [3] (p. 325).

5.6.3 External magnetic field
If we assume that the electric displacement current is negligible, the
external magnetic field can be computed using Ampere's Law



(5.107)

(5.108)

(5.109)

(5.110)

(5.111)

(5.112)

∮
l

H. dl = Io, r ≥ a.

Integrating Ampere's integral around the cylinder circumference with
line element dl = rdϕ

∮
l

H. dl = ∫
2π

0
Hϕrdϕ = Hϕ2πr = Io, r ≥ a.

Putting B = μH gives the flux density outside the conductor

Bϕ =
μIo

2πr
, r ≥ a.

agreeing with Biot–Savart calculations for the dc flux density at a
perpendicular distance r from an infinite wire.

5.7 Magnetic field alternative solution

For the cylindrical conductor

For this case, with current only flowing in the axial direction – z, Hz =
Hr=0 and no variation of H with ϕ or z, but Hϕ = f(r), then

curl H =
1

r

∂(rHϕ)

∂r
=

Hϕ

r
+

∂Hϕ

∂r

From (2.3) assuming no displacement current, then

curl H = J

and

curl H = ( 1
r

∂Hz

∂ϕ −
∂Hϕ

∂z )ar + ( ∂Hr

∂z − ∂Hz

∂r )aϕ

+ 1
r
( ∂(rHϕ)

∂r − ∂Hr

∂ϕ )az



(5.113)

(5.114)

(5.115)

(5.116)

(5.117)

(5.118)

Jz =
Hϕ

r
+

∂Hϕ

∂r

Now since the electric field has only a z-component Ez, we have

curl E = −
∂Ez

∂r
aϕ = −ρ

∂Jz
∂r

aϕ

From (5.113) and (5.114)

∂Jz
∂r

=
∂

∂r
(
Hϕ

r
) +

∂ 2Hϕ

∂r2
=

1

r

∂Hϕ

∂r
−

Hϕ

r2
+

∂ 2Hϕ

∂r2

Hence,

curl E = ρ
∂Jz
∂r

= −ρ[ 1

r

∂Hϕ

∂r
−

Hϕ

r2
+

∂ 2Hϕ

∂r2
]

Also,

curl E = −μ
∂H

∂t

Thus,

∂ 2Hϕ

∂r2
+

1

r

∂Hϕ

∂r
−

Hϕ

r2
= μσ

∂Hϕ

∂t

which agrees with (5.13).

5.8 Graphical results for cylindrical conductors

The following graphical results were obtained using the MATLAB®
programmes at the end of this chapter. The graphical results were plotted by
copying the output text data to Easy Plot.



(5.119)

5.8.1 Current density
The current density was determined directly from (5.45) restated here as

J =
j3/2mIo

2πa

Jo(u)

J1(ua)
=

Io

πa2

ua

2

Jo(u)

J1(ua)

As ω → 0,Jo(u) → 1,J1(ua) → ua/2 and J(r) → I
πa2 = J (r); the

average current density. Figure 5.1 shows the current density for a copper
wire radius a=1 mm and I=1A. Figure 5.1(a) shows the amplitude vs r/a
plotted for three frequencies. At 1 khz the amplitude is constant across the
whole diameter. At higher frequencies the current density decreases sharply
from the surface. The current density at the surface, however, increases
considerably with frequency, see in the following section. Figure 5.1(b)
shows the current density complex components: real (J(R)), imaginary (J(I))
and modulus ∣J∣. The sign of these components changes depending on r/a.

¯





Figure 5.1 (a) Wire current density amplitude for three values of
applied frequency from (5.45). (b) Wire current density
complex components at 100 kHz plotted from (5.45).

5.8.2 Surface current density
In Figure 5.2, the current density for which r = a is plotted as a function of
applied frequency. For frequencies which give a skin depth δ≥a, the surface
current density is constant with Js=318310A/m2. This corresponds to the
average current density Jave = I/(πa2)=318310A/m2. For frequencies which
give a skin depth δ≤a, the surface current density increases approximately
as f1/2 exceeding 100Jave at 1 GHz. This is because the area of conduction
is reduced to a thin-walled tube with a sectional area 2πaδ. Hence, for I=1A
then Js=1/(2π × 0.001δ)=159/δ. Such high current densities at the surface
can melt the conductor.

Figure 5.2 Surface current density Js = Ja when r = a



(5.120)

(5.121)

5.8.3 Impedance of conductor
The normalised impedance is obtained from (5.79) restated here as

Zn =
Z

Rdc

=
j3/2a

√2δ

Jo(u)

J1(ua)
=

ua

2

Jo(u)

J1(ua)

As ω → 0,Z → Rdc as expected.
An approximate equation for the ac resistance was determined in the

Skin Effect chapter (4.10) restated here as

Rac

Rdc
=

1

1 − ( a−δ
a

)
2

=
1

1 − (1 − 1/x)2

where x = a/δ. Hence, if δ = a then Rac = Rdc. If δ ≪ a then Rac ≫ Rdc.
Figures 5.3 and 5.4 show the results of plotting (5.120) and (5.121) for a

1 mm radius copper wire. Figure 5.3 is a plot of normalised impedance vs x
= a/δ. It is seen that when the skin depth equals the conductor radius, that is,
a = δ, then the real and modulus components of the normalised impedance
and the approximate ac resistance become equal to the dc resistance, that is,
∣Z∣ = Z(I) = Rac = Rdc. As the skin depth becomes very large, the imaginary
component of the normalised impedance tends to zero. This is because the
normalised reactance is Xn = Zn(I) = X/Rdc=0.5(a/δ)2. Hence, as δ ≫ a then
Zn(I) → 0. If δ = a then Zn(I)=1/2.



Figure 5.3 Normalised impedance vs ratio of wire diameter to
skin depth using (5.79) and (4.10). Also shown is the
normalised power, Pn.



Figure 5.4 As Figure 5.3, but absolute impedance vs frequency.
Also shown is the power dissipated.

It is also shown that for a/δ>1, the approximate equation for the ac
resistance fits very well the real part of the impedance. If a/δ = x=1, a
discontinuity occurs in Rac due to the 1 − 1/x term in (5.121). Hence, this
equation is not applicable for skin depths greater than the wire radius.

Figure 5.4 shows the frequency dependence of the absolute impedance
and approximate ac resistance. The approximate equation also gives a good
fit with Z(R) for frequencies above about 3.86 kHz. This corresponds to the
frequency at which the skin depth equals the wire radius. For frequencies
below 3.86 kHz, ∣Z∣ = Z(R) = Rdc=2.7 × 10−4Ω. As the frequency decreases
towards zero and the imaginary impedance or reactance tends towards zero,
that is, Z(I) → 0.

5.8.4 Power dissipation
The power dissipated is given by (6.25).



(5.122)

(5.123)

(5.124)

(5.125)

(5.126)

P =< vi >=
I 2
o

2
Re[Z(ω)]

where Io is the applied current amplitude and the impedance is

Z =
j3/2lρm

2πa

Jo(u)

J1(ua)
=

j3/2Rdca

√2δ

Jo(u)

J1(ua)

For a current of 1 A, the dissipation is then just half the real impedance
as shown in Figure 5.4.

The normalised power dissipation is given by (6.28) restated here as

PN =
P

I 2
oRdc

= j3/2 a

2δ
Re [

Jo(ua)

J1(ua)
] =

1

2
Re [

uaJo(u)

2J1(ua)
] =

1

2
Re(ZN)

For a current of 1 A, the dissipation is then just half the real normalised
impedance as shown in Figure 5.3.

5.8.5 Magnetic flux density
The magnetic flux density, B, was derived for fields inside the wire, that is,
r≤a, (5.101) repeated here as

Bϕ = −j1/2 ρmJa

ω

J1(u)

Jo(ua)
, r ≤ a.

At low frequencies and u ≪ 1, Jo(u)=1 and J1(u) = u/2. Equation
(5.101) becomes

Bϕ = −j1/2 ρmJa

ω

u

2
=

μIr

2πa2
, u ≪ 1

where Ja = I/πa2. This agrees with the dc calculation for the flux density
inside the wire, [20]. Outside the wire it can be shown that the dc or low
frequency magnetic field decreases as



(5.127)Bϕ =
μI

2πr
, r ≥ a.

Figure 5.5 shows plots of the internal magnetic flux density (B)
obtained from (5.101) produced by an ac current of 1 A flowing in a copper
wire. (a) shows the complex field components, ∣B∣, B(R) and B(I) plotted as
a function of the ratio r/a and fixed frequency 1MHz. (b) shows the
magnitude only of the field plotted for three frequencies. It is clear from (a)
that the magnetic flux density at 1 MHz is concentrated near the conductor
surface decreasing significantly at r/a=0.6 or 40 per cent penetration. At the
other frequencies, the field decreases less rapidly but reduces to zero at the
conductor centre in agreement with (5.125) and (5.126).



Figure 5.5 (a) Complex field components, ∣B∣, B(R) and B(I)
plotted as a function of the ratio r/a and fixed



frequency 1MHz.(b) Magnitude only of the field ∣B∣
plotted for three frequencies, 1100 and 1000 kHz.

5.8.6 MATLAB® programmes

!wj1.txt MATLAB® analysis of wire current density.
format short e
for x = linspace(.0001,1,100)
muo=pi*4e-7;mur=1;mu=muo*mur;
rho=2.35e-8; !ohm m.
I=1; !Supply current amplitude 1A
f=1e3;w=2*pi*f;
a=0.001; r=a*x;!rod radius, m.
del=(2⁎rho/(w⁎mu))1/2; !skin depth
m=1.414 /del;u = m⁎r⁎j⁎(j)1/2;u1=m⁎a⁎j⁎(j)1/2;
Jo=besselj(0,u);J0a=besselj(0,u1);J1a=besselj(1,u1);
J = (j(3/2))⁎(m⁎I/(2⁎pi⁎a))⁎Jo/J1a; !Current density
JR=real(J);JI=imag(J);Jmag=abs(J);
disp([x Jamag])
end

Note: The ! symbol substitutes for the percentage symbol which is used for
comments in MATLAB.®

Section 5.8.6 provides the MATLAB programs used to calculate the
wire current density, Figure 5.6 MATLAB program for the impedance and
Figure 5.7 MATLAB program for flux density.





Figure 5.6 MATLAB programme for impedance

Figure 5.7 MATLAB programme for flux density



(6.1)

(6.2)

(6.3)

Chapter 6
Power dissipation in a cylindrical

conductor

6.1 Introduction

This chapter on power determines the real part of the power dissipated in a
good conductor and does not include the energy stored in the fields, power
dissipated by dielectric loss or hysteresis loss, as discussed in the Power
Flow chapter.

6.1.1 Power from Poynting theory
The time average power dissipation due to ohmic resistance alone (c.f.
complex Poynting theory) is

P =
σ

2
∫
v

E. E
⁎ dv =

σ

2
∫
v

J

σ
.

J
⁎

σ
dv

The normal and conjugate current densities are

J(r, t) = J(r)ejωt, J ⁎(r, t) = J(r)e−jωt, J(r, t)J ⁎(r, t) = J 2(r)

Hence,

P =
ρ

2
∫
v

J(r). J(r)⁎ dv



(6.4)

(6.5)

(6.6)

(6.7)

(6.8)

(6.10)

(6.9)

For a cylindrical conductor, the solutions are

J(r) = C1Jo(u1), J(r)⁎ = C2Jo(u2)

where dv=2πrdrl and

u1 = mrj3/2, u2 = mrj1/2

Substitute in (6.3)

P =
2πlρC1C2

2
∫

a

o

rJo(u1)Jo(u2) dr

From (A.41)

∫
a

o

rJo(u1)Jo(u2) dr =
a

2jm2
[Jo(u2)

dJo(u1)

da
− Jo(u1)

dJo(u2)

da
]

Substitute for the Kelvin functions

where the prime (') refers to differentiation with respect to a. Putting

a = beroma, b = beioma, a′= ber′
oma, b = bei′

oma

Hence,

∫
a

o

rJo(u1)Jo(u2) dr =
a

2jm2
[(a − jb)(a′+jb′) − (a + jb)(a′−jb′)]

Multiplying out gives

∫ a

o
rJo(u1)Jo(u2) dr = a

2jm2 [(beroma − jbeioma)(ber′
oma + jbei′

oma)

−(beroma + jbeioma)(ber′
oma − jbei′

oma)]



(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

∫
a

o

rJo(u1)Jo(u2) dr =
a

m2
(ab′−a′b)

Substituting into (6.7)

P =
2πlρC1C2

2

a

m2
(beroma bei′

oma − ber′
oma beioma)

From (5.62), we obtained

Io1 =
2πC1

m
[bei′o(ma) − jber′o(ma)]

We need to use a similar method to determine Io2 and C2. From these,
we can obtain C1C2 from Io1Io2.

Io2 = ∫
s

J
⁎. ds = C2 ∫

a

0
Jo(u2)2πrdr

Io2 =
2πC2

(mj1/2)
2
∫

u2a

0
u2Jo(u2) du2

Using the identity ∫uJo(u)du = uJ1(u)

Io2 =
2πC2

(mj1/2)
2
u2aJ1(u2a) =

2πC2a

mj1/2
J1(u2a)

Substitute for the Kelvin function

Io2 =
2πC2a

mj1/2
j−1/2(ber′

oma − jbei′
oma)

Hence,

Io2 = −
2πC2a

m
(bei′

oma + jber′
oma)

The amplitude of the supply current is then



(6.19)

(6.20)

(6.21)

(6.22)

(6.23)

(6.24)

I 2
o = Io1Io2 = ( 2πa

m
)

2

C1C2(ber′2
o ma + bei′2

o ma)

Hence,

C1C2 = ( m

2πa
)

2 I 2
o

ber′2
o ma + bei′2

o ma

The power dissipation (6.12) then becomes

P = ( 2πlρa

2m2
)( m

2πa
)

2
I 2
om(

beroma bei′
oma − ber′

oma beioma

ber′2
o ma + bei′2

o ma
)

where the differentiation is with respect to ma, that is, m d
dma

. Hence, the
extra m in the numerator. The above equation may now be simplified to

P =
I 2
oRdc

2√2

a

δ
( beroma bei′

oma − ber′
oma beioma

ber′2
o ma + bei′2

o ma
)

where Rdc = ρl

πa2  and m = √2/δ.
If we put P = I 2

oRac where Rac is the ac resistance, then

Rac

Rdc
=

a

2√2δ
(
beroma bei′

oma − ber′
oma beioma

ber′2
o ma + bei′2

o ma
)

The normalised ac power dissipation is the ratio of the ac dissipation to
the dc dissipation

PN =
P

∣ I ∣2 Rdc

=
Rac

Rdc

Thus it is identical to the real part of the normalised ac resistance.

6.1.2 Power from impedance



(6.25)

(6.26)

(6.27)

(6.28)

(6.29)

(6.30)

The power dissipated may be determined from the impedance calculated
here using the time average power (3.126)

P =< vi >=
I 2
o

2
Re[Z(ω)]

where ÎÎ ⁎ = I 2
o  is the applied current amplitude and the impedance is from

(5.78)

Z =
j3/2lρm

2πa

Jo(u)

J1(ua)
=

j3/2Rdca

√2δ

Jo(u)

J1(ua)

Substituting for the real part of the impedance (5.89) gives

P =
I 2
oRdca

2√2δ
[ bero(mr)bei′o(ma) − beio(mr)ber′o(ma)

ber′2
o (ma) + bei′2

o (ma)
]

which agrees with the previous calculation (6.22).
The normalised power dissipation is then

PN =
P

I 2
oRdc

= j3/2 a

2δ
Re [

Jo(ua)

J1(ua)
] =

1

2
Re [

uaJo(u)

2J1(ua)
]

These are useful for calculations using MATLAB® or other software.
We may also use (5.45) to give

P =
I 2
oRdc

2
Re[ J(r)

J (r)
]

where J(r) is the radial dependent current density. J (r) = Io/πa
2 is the

average current density, which is equal to the dc current density. Hence,

P =
Ioρl

2
Re[J(r)] =

Io

2
Re[V (r)]

where V(r) = lρJ(r). The time-averaged power dissipated is thus half the IV
product. This is only of general interest since the Bessel function dependent

¯

¯



current density J(r) or voltage V(r) have to be determined. However, the
result supports the validity of the analysis.



Chapter 7
Inductance and resistance of cylindrical
conductors – analysis and experimental

measurements

7.1 Introduction

This chapter mainly concerns the analysis and experimental measurements of
the inductance and resistance of cylindrical conductors. The theory of the
internal resistance of metals as a function of frequency leading to the skin
effect has been widely reported over many years, ever since James Clerk
Maxwell's seminal work, ‘Treatise on Electricity and Magnetism’ [3,38,45].
Excellent accounts have been presented concerning the internal impedance of
copper conductors including details of the ac resistance and internal
inductance [88]. Recent work has largely concentrated on the accuracy of the
theories and Bessel functions used in the analysis particularly at high
frequencies for application in rf devices [89]. The skin effect in ferrous metals
and in particular railway tracks have also received attention over the years
including analysis of the internal inductance [90].

Experimental measurements of the skin effect, particularly the internal
inductance (Li) in non-ferrous conductors have been much less investigated.
This may be because Li is generally considerably less than the external
inductance Le, which depends on the geometry of the conductor being studied.
Attempts were made previously to measure Li in copper conductors but with
varying success [91]. At low frequencies or d.c. Li of non-ferrous metals is



constant with maximum value of 50 μrnHm−1 where μr is the relative
magnetic permeability. For copper μr ≈ 1 giving Li=50nHm−1. However, in
ferrous metals μr may be very large and Li more significant. At frequencies
above a certain threshold, Li decreases with frequency according to f−1/2 and
the resistance increases with frequency according to f+1/2. At low frequencies
close to d.c., Li in cylindrical conductors is independent of conductor radius.
However, the threshold frequency is dependent on the conductor radius (see
Section 7.6).

In this chapter, we consider a cylindrical conductor with radius a and
length l where the current flows in the axial direction. The applied current is
assumed to be either steady state (dc) or sinusoidal (ac). We first briefly
review the steady state, d.c., calculation of the internal and external inductance
of single wires, two-wire and coaxial transmission lines. This is followed by
an analysis of the internal inductance for sinusoidal currents determined by
equating energies in the inductance with the energy in the magnetic fields. To
achieve this, equations for the sinusoidal internal magnetic field are derived in
detail.

The ohmic loss and internal ac resistance are then determined from power
dissipation in the conductor. For the case of the internal inductance and
resistance, the low frequency limit is obtained and compared with the steady
state calculations.

Experimental measurements of the internal inductance and resistance of
some non-ferrous and ferrous metals are then presented, followed by a
discussion and summary.

7.2 Inductance

The term ‘inductance’ arises from Michael Faraday's experiments on
electromagnetic induction [3]. In one experiment, he wound copper wire
around opposite sides of an iron ring (modern-day toroidal transformer). He
noticed that when the current was interrupted in one coil, it induced a voltage
in the other coil. From these experiments, he produced the famous Faraday
law of electromagnetic induction: ‘The emf around a closed path is equal to
the negative time rate of change of the magnetic flux enclosed by the path’.
Although Faraday avoided the use of mathematical terminology, preferring to



(7.1)

(7.2)

(7.3)

(7.4)

describe his observations in terms of the written word, today we use the
mathematical form

Vemf = −
dΦ

dt

where Vemf is the electromagnetic force around the closed path and Φ the
magnetic flux enclosed by the path. Since the magnetic flux is proportional to
the current in the wire (I), we can write as follows:

Φ = LI, or L =
Φ

I

where L is a constant associated with electromagnetic induction and referred
to as the magnetic inductance, defined by the ratio of the magnetic flux to the
current in the wire, also associated with this is the case of mutual inductance
due to magnetic coupling with external components. In the following, we only
consider the case of inductance of the wire itself, i.e. self-inductance.
Equations for the self-inductance may be obtained for the steady state d.c.
case and the time-dependent a.c. case.

7.2.1 Steady state (dc) calculations of self-inductance
In this case, the direct current I flows uniformly through the cross section of
the conductor. We identify two cases: internal inductance inside the wire, r≤a
where a is the radius of the wire and external inductance outside the wire r≥a.

Internal self-inductance
For this case, the magnetic flux density is [43]

Bϕ =
μIr

2πa2

where μ = μoμr. μo is the permeability of free space (4π × 10−7H/m). μr is the
relative permeability of the conductor. In this case, the current through the
area πr2 is only a fraction of the total area πa2. Thus, we can write as follows:

Ir = I
r2

a2



(7.5)

(7.6)

(7.7)

(7.8)

(7.9)

The internal magnetic flux through the rotational area ds = ldr is then

Ψi = ∫
s

Bϕds = l∫
a

0
Bϕdr =

lμI

2πa2
∫

a

0
r
r2

a2
dr =

lμI

2πa2

a4

4a2
=

lμI

8π

Hence the internal inductance Li = Ψ/I is

Li =
lμ

8π
=50μr nHm−1

The internal inductance is therefore only dependent on the magnetic
permeability μr and independent of the wire's radius. However, the change in
Łi with frequency does depend on conductor radius (see later sections).

External self-inductance
For a single solid cylindrical conductor or wire the determination of the
external self inductance, r≥a, is more complex and is given by [45,74]

Le =
μol

2π
[ln

2l

a
− 1]

The total inductance for a single solid cylindrical conductor or wire is then
the sum of the internal inductance (Li) and external inductance (Le). Hence,

L =
μol

2π
[ln

2l

a
− 1] +

lμoμr

8π

Twin-wire Transmission Line
For a twin-wire transmission line calculations using vector potentials [20], the
total inductance of the two single lines, each l metres long and spaced 2b
apart, is

LTL =
lμo

π
ln

2b

a
+

lμoμr

4π

Note that for the twin-wire transmission line case, only the external
inductance is affected by the distance between the conductors, 2b. If the
distance between the conductors is close to the conductor radius, that is, 2b ≈
a, the external inductance is no longer given by (7.7), but becomes [38,92]



(7.10)

(7.11)

(7.12)

(7.13)

(7.14)

(7.15)

(7.16)

Le =
μo

π
cosh−1 b

a

Coaxial Transmission Line
For a coaxial transmission line core radius a, screen radius b, the external
magnetic field is

Bϕ =
μoI

2πr

Bϕ = ∫
s

Bϕds = l∫
b

a

Bϕdr =
lμoI

2π
∫

b

a

dr

r
=

lμoI

2π
ln

b

a

Hence, the external inductance Le = Ψe/I is

Lce =
lμo

2π
ln

b

a

The sum of the internal inductance and external inductance is then

L =
lμo

2π
ln

b

a
+

lμoμr

8π

7.2.2 Internal inductance-energy method
The steady state energy density in a magnetic field is [20]

wM =
1

2
μH 2, Jm−3

This can also be expressed in terms of current density and vector magnetic
potential

WM =
1

2
∫
V

J. A dv

where J is the current density and A is the vector potential. Since both of these
parameters are proportional to current I, we can write J. A = L1I2 where L1
the constant of proportionality or inductance per m3. In terms of energy
density, this becomes wM = 1

2 L1I
2. Equating this with (7.15) gives

1 1 1



(7.17)

(7.18)

(7.19)

(7.20)

(7.21)

(7.22)

(7.23)

1

2
L1I

2 =
1

2
μH 2, Jm−3, L1 =

1

I 2
μH 2, Hm−3

The inductance in Henries is L = ∫VL1dv. Hence

L =
1

I 2
∫
V

μH 2dv,H

For r≤a the internal magnetic field is

Hϕ =
Ir

2πa2

The internal energy with relative permeability μr and inductance Li are

1

2
LiI

2 =
μoμr

2
∫

a

0
[ Ir

2πa2
]

2

2πrdrl

The internal inductance is then

Li =
μoμrl

2πa4
∫

a

0
r3dr =

μoμrl

2πa4

a4

4

Li =
μoμrl

8π

which agrees with (7.6).

7.3 Sinusoidal fields

The time average energy relation is

1

2
L < I 2 >=

1

4
∫
V

μHϕ. H
⁎
ϕ
dV

where H⁎
ϕ is the complex conjugate of Hϕ. The time average < I 2 >= I 2

0 /2

where I0 is the current amplitude. The internal inductance is then



(7.24)

(7.25)

(7.26)

(7.27)

(7.28)

(7.29)

(7.30)

(7.31)

Li =
μ

I 2
0

∫
V

Hϕ. H
⁎
ϕ dV

7.3.1 Internal magnetic field
The magnetic field is obtained from Maxwell's equation

curl E = −
∂B

∂t

which for cylindrical co-ordinates and sinusoidal fields

curl E = −
∂Ez

∂r
aϕ = −jωBϕaϕ

Hence, since Bϕ and Ez are functions of r only and Ez = ρJz, we can write

Bϕ(r)=(1/jω)
dEz(r)

dr
= (ρ/jω)

dJz(r)

dr

Bϕ = −j1/2 ρmJa

ω

J1(u)

Jo(ua)
, r ≤ a.

or

Bϕ = −
ρJa

ωa
u2a

J1(u1)

Jo(u1a)

and it's conjugate

B
⁎
ϕ =

ρJa

ωa
u1a

J1(u2)

Jo(u2a)

where Ja is the current density at r = a. Jo and J1 are zero and first-order
Bessel functions of the first kind, respectively, with arguments

u1 = mrj3/2, u1a = maj3/2,u2 = mrj1/2, u2a = maj1/2,m2 = ωμσ.



(7.32)

(7.33)

We assume that the permeability μ and conductivity σ are constants. The
internal magnetic field given by (7.28) is plotted in Figure 7.1 for a copper
wire with the specified dimensions.

Figure 7.1 Internal magnetic field in copper wire, radius 0.5 mm,
length 1.0 m and I = 1.0 A. Plotted from (7.28)

7.3.2 Internal energy and inductance
The time average energy in the magnetic field is

WM =
2π

4μ
∫

a

0
BϕB

⁎
ϕrdr

Substitute for (7.29) and (7.30)

WM =
2π

4μ
BaB

⁎
a ∫

a

0
J1(u1)J1(u2)rdr



(7.34)

(7.35)

(7.36)

(7.37)

(7.38)

(7.39)

(7.40)

(7.41)

where

Ba = −
ρJa

ωa

u2a

Jo(u1a)

B⁎
a =

ρJa

ωa

u1a

Jo(u2a)

Equating the inductive energy and the magnetic energy

1

2
L < I 2 >= WM

The time average < I 2 >= I 2
rms/2 where Irms is the rms current

amplitude. The internal inductance is then

Li=2WM/I 2
rms

Li =
π

μI 2
rms

BaB
⁎
a ∫

a

0
J1(u1)J1(u2)rdr

The integral is given by [76]

∫
a

0
xJ1(αx)J1(βx)dx =

x

α2 − β2
[αJ1(αx)Jo(βx) − αJo(αx)J1(βx)]

Putting

Hence,

∫
a

0
rJ1(u1)J1(u2)dr =

a2

u2
1a − u2

2a

[u2aJ1(u1a)Jo(u2a) − u1aJo(u1a)J1(u2a)]

u1 = mrj3/2 = αx, u1a = maj3/2αa, u2 = mrj1/2 = βx,

u2a = maj1/2 = βa.



(7.42)

(7.43)

(7.44)

(7.45)

(7.46)

(7.47)

(7.48)

7.4 Current amplitude

In terms of the magnetic field the total current is given by the Biot–Savart law
[20]

I =
2πaBϕ

μ

or

I = −j1/2 2πaρmJa

μω

J1(u1)

Jo(u1a)
= −j1/2 2πaJa

m

J1(u1)

Jo(u1a)

The complex conjugate is

I ⁎ = j1/2 2πaJa
m

J1(u2)

Jo(u2a)

Irms = I/√2, I 2
rms = I 2/2. Hence,

I 2
rms=2[ 2πaJa

m
]

2 J1(u1)J1(u1a)

J0(u2)Jo(u2a)

7.4.1 Low-frequency approximation
At low frequencies or u ≪ 1, Jo(u)=1 and J1(u) = u/2, then

∫
a

0
rJ1(u1)J1(u2)dr = −

m2

4

a4

4

I 2
rms = −

1

2
π2a4J 2

a

BaB
⁎
a = [ μJa

m
]

2

Substitution of the last three equations into (7.38) gives the LF internal
inductance



(7.49)Lio =
μ

8π
Hm−1=50μr nHm−1

This is the same as that obtained for the steady state calculation (7.6).
Figure 7.2 shows a plot of the inductance Li from (7.38) to (7.47) and

associated equations using MATLAB.

Figure 7.2 Internal inductance Li for copper wire, radius 0.5 mm,
length 1.0 m, I = 1.0 A from (7.38) to (7.47)

7.5 Ohmic loss and a.c. resistance

The power dissipation density due to ohmic resistance alone is



(7.51)

(7.52)

(7.53)

(7.54)

(7.55)

(7.56)

(7.50)p = E. JJm−3

Assuming an ohmic conductor with J = σE then the time average
dissipation in volume V is

< P >= (σ/2)∫
V

E. E
⁎dV = (ρ/2)∫

V

J. J
⁎dV

For a solid cylinder of unit length and radius a,

< P >= (ρ/2)∫
a

0
JzJ

⁎
z 2πrdr

In this case the current density is given by (5.98) in Appendix

Jz = Ja
Jo(u1)

Jo(u1a)
, J ⁎

z = Ja
Jo(u2)

Jo(u2a)

where J ⁎
z  is the complex conjugate of Jz, Ja is the current density at the

cylinder surface r = a and the Bessel arguments u are given in (7.40).
Substituting these two equations into (7.52) gives

< P >=
πρJ 2

a

Jo(u1a)Jo(u2a)
∫

a

0
Jo(u1)Jo(u2)rdr

From Poynting's theorem the time average power is also given by

< P >=
I 2
o

2
Re[Z(ω)] = I 2

rmsRe[Z(ω)]

where Io is the current amplitude and Re[Z(ω)] is the real part of the
frequency dependent complex impedance. Hence,

Re[Z(ω)] =
< P >

I 2
rms

=
πρJ 2

a

I 2
rmsJo(u1a)Jo(u2a)

∫
a

0

Jo(u1)Jo(u2)rdr

The rms current is given by (7.45). Substituting for this leads to



(7.57)

(7.58)

Re[Z(ω)] =
Rdcm

2

2J1(u1a)J1(u2a)
∫

a

0
Jo(u1)Jo(u2)rdr Ω/m

where m2 = σμω and steady state dc resistance Rdc = ρ/(πa2). A dimensions
check gives: m2 = σμω = 1/metres2, the integral =m2, denominator is
dimensionless and Rdc = Ω/m.

At low frequencies or u ≪ 1, Jo(u)=1 and J1(u) = u/2 then

Re[Z(ω)] =
Rdcm

2

2

a2/2

(u1a/2)(u2a/2)
=

Rdc(ma)2

4

4

−(ma)2
= −Rdc

Hence, ∣Re[Z(ω)]∣ = Rdc at low frequencies as expected.
Figure 7.3 shows plots of the internal energy (W), inductance (Li) and ac

resistance (Rac) (7.33), (7.37), (7.57), respectively.



(7.59)

(7.60)

(7.61)

(7.62)

Figure 7.3 Internal inductance (Li), resistance (Rac) and energy
(W). Copper wire, radius 0.5 mm, length 1.0 m and I =
1.0 A.

7.6 Frequency response of internal inductance and
resistance

The internal impedance of a cylindrical conductor is given by (5.79)

Zi = Rdc

ua

2

Jo(ua)

J1(ua)

where Rdc is the steady state d.c. resistance of the conductor, Jo(ua) and
J1(ua) are zero-order and first-order Bessel functions of the first kind,
respectively, ua = j3/2√2a/δ, a is the wire radius, δ = √2ρ/ωμ is the skin
depth of wire resistivity ρ, permeability μ = μoμr and angular frequency ω.

The internal resistance and internal inductance are then given by the real
and imaginary parts of the complex impedance

Ri = Re(Zi), Li =
Im(Zi)

ω

In order to obtain low and high frequency approximations we require the
series expansion of (7.59). This is given by

ua

2

Jo(ua)

J1(ua)
=1 −

u2
a

8
−

u4
a

192
−

u6
a

3072
−

u8
a

46080
− ⋯

which is proved in [95,104].

7.6.1 Low-frequency approximation
Taking the first three terms only of (7.61) and substituting into (7.59) gives

Zi = Rdc [1 +
j

4
( a

δ
)

2
+

1

48
( a

δ
)

4
]



(7.63)

(7.64)

(7.65)

(7.66)

(7.67)

(7.68)

Hence, the low-frequency resistance is

Re(Zi) = Ri = Rdc [1 +
1

48
( a

δ
)

4
]

which agrees with Landau et al. [12]. This may be re-written as

Ri = Rdc +
l2μ2f 2

48Rdc

The internal reactance is given by the imaginary part of (7.62)

Im(Zi) = Rdc
1

4
( a

δ
)

2

and the internal inductance is

Lint =
Im(Zint)

ω
=

Rdc

4ω
( a

δ
)

2

Substituting for Rdc = ρl/(πa2) and the skin depth equation, yields

Lint =
lμ

8π
=50μr nH/m

which is the same as that obtained from steady state calculations [20]. Thus, in
this low-frequency approximation, the ac resistance increases as f2 and the
inductance is constant. The approximate low frequency (7.63) agrees with the
full Bessel function analysis (7.59) for values of a/δ≤1, but diverges for higher
values of a/δ.

7.6.2 High-frequency approximation
For high values of the Bessel function arguments ua ≫ 1 corresponding to
high frequencies, then Jo(ua)/J1(ua) = − j [38]. Hence (7.59) becomes

Zi = Rdc
ua

2
(−j)

and this leads to



(7.69)

(7.70)

(7.72)

(7.73)

(7.74)

(7.71)

Zi =
Rdc

2
(a/δ)(1 + j) =

l

2πa
(ρ/δ)(1 + j)

Thus,

Ri =
Rdc

2
(a/δ) =

aRdc

2
f 1/2√πμ/ρ

Hence, at high frequencies, the real part of the impedance or the ac
resistance is proportional to the square root of the applied frequency. Also
from (7.69)

Ri = Xi = ωLi

Thus,

Li =
Rdc

2ω
(a/δ) =

l

2πa
( μρ

2ω
)

1/2

or

Li = kf−1/2, Ri=2πkf 1/2

where

k =
l

4πa
( μρ

π
)

1/2

Figure 7.4 shows Ri and Li frequency response for Cu wire from (7.59)
using Bessel functions. The Cu wire was 1 mm diameter, 1 m long, relative
permeability μr=1, resistivity 17nΩm−1 giving Rdc=21.645mΩ. Equation
(7.74) gives k=1.3124 × 10−5.



(7.75)

Figure 7.4 Internal resistance Ri and inductance Li frequency
response for 1 mm diameter, 1 m long Cu wire. From the
impedance Zi (7.59) using Bessel functions. Sloping
straight lines show the high-frequency approximations Ri
∝ f1/2 and Li ∝ f−1/2. The horizontal lines indicate the
constant zero frequency values Ri = Rio = Rdc, Li = Lio
= 50 nH/m. The constant frequency fc occurs at the
interception of the high-frequency approximations and
the constant zero-frequency values.

The sloping straight lines in the figure follow (7.73) intercepting with the
horizontal constant straight lines at a frequency f = fc. This occurs for

Ri = Rio = Rdc, Li = Lio=50μr nH/m.

Hence from (7.71)



(7.76)

(7.77)

(7.78)

(7.80)

(7.81)

(7.82)

(7.83)

(7.79)

fc =
Rio

2πLio

For the general case of copper wires with different diameters (7.76), gives

fc =
Rio

2πLio

=
ρl

πa22πLio

=
0.01753 l

a2

For the case of Figure 7.4 with a=0.5mm, l=1m

fc =
ρl

πa22π50e−9
=68.9 kHz .

At this frequency Ri increases by 26% and Li decreases by 12.9%.
In general the change in the inductance and resistance at fc is given by

ΔLic = Lic − Lio, ΔRic = Ric − Rio

where Lic and Ric are determined from (7.60) at the frequency fc given by
(7.76) or (7.77).

In (7.59), ua is given by

ua = j3/2√2a/δ

This may be re-written as

ua = j3/2√f/fc1

where f is the normal applied frequency and

fc1 =
ρ

2πμa2
, Hz

At the frequency fc described by (7.76) or (7.77), then

fc

fc1
=8

and



(7.84)uac = j3/2√8=2.828j3/2

Since generally ua is given by (7.80), at the frequency fc, √2a/δ = √8. Thus,
a/δ = √2=1.414.

For a=0.5 mm, using a MATLAB program (Lipmat.txt), Table 7.1 lists the
parameters which lead to the change in Ri and Li at the frequency fc.

Table 7.1 The parameters which lead to the change in Ri and Li at the
frequency fc

a 0.5 mm
Rio 2.1645e − 002 Ω
Lio 5.0000e − 008 H
fc1 8.6123e + 003 Hz
fc 6.8898e + 004 Hz
Ric 2.7373e − 002 Ω
Lic 4.3524e − 008 H
dLi −6.4759e − 009 H
dRi 5.7282e − 003 Ω
ΔLi −1.2952e + 001 %
ΔRi 2.6464e + 001 %

7.7 Experimental measurements

The following results were obtained from copper, aluminium, iron, nickel and
canthal wires measured using impedance analysers or a Gain Phase-Metre
(GPM) method, [36] as stated in the figures.

The copper wire used was the type as used in standard house wiring,
99.90% pure copper [96,134]. The aluminium used was an 8 mm diameter
aluminium alloy rod with anodised surface, which was removed for the
electrical contacts. This sample had a measured density of 2752 kgm3 and
resistivity of 30.78 nΩm. This compares with pure Al mean values of density
2703 kg m3 and resistivity 26.7 nΩm, [97].



The iron wire was 99.5% pure. The nickel wire was Ni 95% and 5% (Al +
Mn + Si). The Kanthal wire was the A1 alloy FeCrAl (22% Cr, 58% Al,
20%Fe). Resistivity ρ=1.45μΩ. m at 20°C. Kanthal handbook p.15 [42,93].

7.8 Discussion and summary

Referring to the non-ferrous conductors, copper and aluminium, Figure 7.5
gives impedance measurements using the HP4192A impedance analyser on 8
mm dia aluminium alloy rod, total length 0.985 m, folded, gap 3 cm. The
experimental results agree with theory for low frequencies, but the resistance
begins to deviate at frequencies above 10 kHz, and the inductance at
frequencies above about 200 kHz. In Figure 7.6 for the folded copper rod, a
negative peak occurs in the internal inductance at about 100 kHz. It is not
clear why this occurred and needs further investigation. However, the overall
decrease in frequency agrees with the theoretical value of f−1/2 Hz.



Figure 7.5 Impedance measurements using HP4192A impedance
analyzer on 8 mm dia aluminium alloy rod total length
0.985 m, folded, gap 3 cm. Theoretical results indicated
by (th).



Figure 7.6 GPM measurements on 4 mm dia Cu rod folded. Total
length 0.85 m. Zsc subtracted. Rs = 2.25 Ω,60 nH,
Theory: MATLAB zrod.txt Measurements: P2-2b.txt, P2-
2sc3.txt, MATLAB Cumat.txt

In the high frequency measurements, Figures 7.7 and 7.8, the R and L
values look rather different, but the internal inductance dLi is fairly close to
the theoretical value of about 1 nH.



Figure 7.7 R and L measurements of copper wire 0.114 mm diameter
by 2 cm long using HP4191A impedance analyzer. Gives
L = 28.404 nH at 47.95 MHz, L = 29.6 nH at 3.6 MHz,
dL = Li = 1.2 nH. Theory gives Li = 1 nH.



Figure 7.8 R and L measurements of copper wire 0.062 mm
diameter by 14.5 mm long using HP4191A impedance
analyzer. dL = 32.1 nH (at 3.8 MHz) −31.17 nH (at 50
MHz) = 0.93 nH. Theory gives Li = 1 nH.

The measurements on the ferrous metals, Iron, Nickel and Kanthal wire,
Figures 7.9–7.13, also showed clearly the transition to f−1/2 for the internal
inductance and f1/2 for the resistance. Calculated values of the low-frequency
permeability agreed approximately with expected values.



Figure 7.9 Iron wire, diameter 2 mm, formed into a rectangular loop
with mean gap width 18 mm, length 19.2 cm and current
I = 0.6 Arms. Measurements performed using a Gain
Phase-Meter (GPM) method [36] with function
generator HP3325A and low-frequency power amplifier
for frequency range 10 Hz to 1 kHz and high-frequency
power amplifier for 1 kHz to 1 MHz. Internal inductance
(Li), resistance (R) and reactance (Xi).



Figure 7.10 Iron wire as shown in Figure 7.9. Measurements
performed using Impedance Analyzer (HP4192A).
Inductance (L), internal inductance (Li) and resistance
(R).



Figure 7.11 Nickel wire 0.5 mm diameter and 45.5 cm long.
Measurements performed using Impedance Analyzer
(HP4192A). Inductance (L), internal inductance (Li = L
− 0.923 μH) and resistance (R).



Figure 7.12 Kanthal wire 0.68 mm diameter, 5 cm long.
Measurements performed using Impedance Analyzer
(HP4192A). Inductance (L), internal inductance (Li) and
resistance (R).



Figure 7.13 Kanthal wire 0.68 mm diameter, total electrical length
98 cm, formed in to a rectangular loop gap 5 cm.
Measurements performed using Impedance Analyzer
(HP4192A). Inductance (L), internal inductance (Li) and
resistance (R).

In the introduction, the reasons for this work were given mainly because of
the lack of experimental data available on internal inductance measurements.
But also because these measurements can supply an alternative measurement
of the permeability of conductors, particularly in ferrous metals. This is
followed by the analysis of the internal inductance of cylindrical conductors
for both steady state d.c. and sinusoidal a.c. sources. The ohmic loss and
internal ac resistance are then determined from power dissipation in the
conductor. In each case of the internal inductance and resistance, the low
frequency limit is obtained and compared with the steady state calculations.
Experimental measurements of the internal inductance and resistance of non-
ferrous and ferrous metals are then presented. Although the measurements on
non-ferrous metals, copper and aluminium, were weak at low frequencies due



(7.85)

(7.86)

(7.87)

(7.88)

(7.89)

to the unity relative permeability, the results obtained revealed the low
frequency threshold of 50 nH/m and the high frequency decrease proportional
to f−1/2 Hz. Generally, the impedance measurement techniques employed have
successfully revealed the internal inductance of non-ferrous and ferrous
metals, but agreement with theory is not always held.

7.9 Appendix

7.9.1 Internal inductance from the internal magnetic flux
The internal inductance may also be determined from the ratio of the internal
magnetic flux Ψ to the ac current I(ω) according to

Li =
Ψ

I(ω)
=

1

I(ω)
∫
s

Bϕds =
l

I(ω)
∫

a

0
Bϕdr

where the integration is along the length l of the conductor over an area
between 0 and a. Substituting for the current (7.42) and (Bϕ) from (5.125)
gives

Li =
μl

2πaBϕ

∫
a

0
Bϕdr =

μl

2πaJ1(u1a)mj3/2
∫

u1a

0
J1(u1)du

Using the Bessel identity

∫
ua

0
J1(u)du=1 − Jo(ua)

then

Li =
μl

2πa

1 − Jo(u1a)

u1aJ1(u1a)

At low frequencies

Jo(u1a)=1 − u2
1a, J1(u1a) = u1a/2



(7.90)

(7.91)

leading to

Li =
μl

4π

This is the result for an infinite wire or twin transmission lines. For a sem-
infinite wire or single wire I=4πaB/μ. Then

Li =
μl

4πa

1 − Jo(u1a)

u1aJ1(u1a)

At low frequencies this gives Li =
μl

8π  as derived previously (7.66). Figure
7.14 show a plot of the inductance Li from (7.91) using MATLAB.

Figure 7.14 Internal inductance from magnetic flux for copper wire,
radius 0.5 mm, length 1.0 m, I = 1.0 A



Chapter 8
Cylindrical conductors – axial AC

magnetic field

8.1 Introduction

The application of a time-varying magnetic field is widely used in
electromagnetics in devices such as transformers, electric motors,
generators, eddy current testing and other non-contact measuring
techniques. In these cases, the induced voltage and currents may be
determined using Faraday's law, induced emf = − dϕ/dt, where ϕ is the flux
threading the conductors. However, this approach does not reveal how the
magnetic field penetrates the conductors and its spatial variation within the
conductor. A more detailed approach is to solve the time-dependent
Maxwell's equations.

8.2 Magnetic field penetration

In the present case, we consider a time-dependent magnetic field B = Boejωt

applied axially to a long cylindrical conductor with radius a, Figure 8.1. Bo
is less than the saturation flux density Bsat and any static magnetic field is
assumed zero, that is, Bdc=0. The field penetration into the conductor is



(8.3)

(8.1)

(8.2)

obtained from Maxwell's equations, which yield the diffusion (5.3), re-
written here as

∇2
B = jm2

B

Figure 8.1 (a) General cylindrical co-ordinates and (b)
relationship to a cylindrical conductor in a magnetic
field B (cyl4.eps)

where m2 = ωμσ or m = √ 2/δ, where the skin depth δ = √(2/ωμσ). Within
the conductor, we seek solutions of the form

B(r, t) = B(r)ejωt

At the cylinder surface r = a, the field is just the applied field B(a, t) =
Boejωt. Equation (8.1) may be expressed in cylindrical co-ordinates, Figures
8.1(a) and 8.1(b), where in this case we can take ρ = r.

∇2B = r−1 ∂

∂r
(r ∂B

∂r
) + r−2 ∂ 2B

∂ϕ2
+

∂ 2B

∂z2
= jm2B.

Assuming B does not vary with angle ϕ or distance z, then



(8.4)

(8.5)

(8.7)

(8.6)

r2 ∂ 2B

∂r2
+ r

∂B

∂r
− jm2Br2=0

Bessel's modified equation order v is defined by

u2 ∂ 2B

∂u2
+ u

∂B

∂u
+ (u2 − v2)B=0

where u = mrj √ j and in our case v=0. The general solution is

B(r) = AJo(u)

where Jo(u) is the Bessel function of the first kind with complex argument
u and order zero.

See the general Appendix, Bessel's modified equation.
At the boundary of the conductor, r = a, B(a) = AJo(ua), where 

ua = amj√j. Taking the ratio of these two fields eliminates A. Hence,
substituting B(r) in (8.2) gives for the magnetic flux density within the
conductor

B(r, t) = B(a)
Jo(u)

Jo(ua)
ejωt

Figure 8.2 shows plots of the modulus, real and imaginary normalised
amplitude terms BN = B(r)/B(a) for (8.7), using the Bessel functions
available in MATLAB. Figure 8.2(a) shows that the modulus ∣BN∣ becomes
flat and nearly equal to the applied field B(a) as the frequency decreases. As
the frequency increases, Figure 8.2(b), the flux density decreases towards
the centre of the conductor.



Figure 8.2 Plot of (8.7) normalised amplitude. Copper rod, radius
4 mm, (a) f = 1 kHz and (b) f = 10 kHz

8.2.1 Flux density complex components



(8.8)

(8.9)

(8.10)

(8.13)

(8.14)

(8.11)

(8.12)

Equation (8.7) can be re-expressed in terms of real and imaginary complex
components, sometimes referred to as Kelvin functions [78].

Substituting for u = rmj√j in (8.5), where m = √ωμσ = √2/δ,
gives (8.4). Hence,

Jo(u)=1 + j(mr/2)2 −
(mr/2)4

(2!)2
− j

(mr/2)6

(3!)2
+ ⋯

Separating out the real and imaginary complex components gives the
Kelvin functions

RJo(u) = bero(mr)=1 −
(mr/2)4

(2!)2
+

(mr/2)8

(4!)2
−

(mr/2)12

(6!)2
+ ⋯

IJo(u) = beio(mr) = (mr/2)2 −
(mr/2)6

(3!)2
+

(mr/2)10

(5!)2
⋯

Hence,

B(mr) = A[bero(mr) + jbeio(mr)]

At the boundary r = a, where B(mr) = B(ma) = const, then

B(ma) = A[bero(ma) + jbeio(ma)]

Substituting for A

B(mr) = B(ma)
bero(mr) + jbeio(mr)

bero(ma) + jbeio(ma)

Rationalising and substituting into (8.2) gives for the magnetic field
within the conductor

B(mr, t) = B(ma)√
ber2

o(mr) + bei2
o(mr)

ber2
o(ma) + bei2

o(ma)
ej(ωt+ϕ1)



(8.15)

(8.16)

(8.17)

(8.18)

(8.19)

where the phase difference ϕ1 is

ϕ1 = tan−1 beio(mr)

bero(mr)
− tan−1 beio(ma)

bero(ma)

In this approach, the amplitude and phase are given explicitly by (8.14)
and (8.15), whereas in (8.7) the amplitude and phase are embedded in the
Bessel functions.

8.3 The average permeability

The average permeability is defined by

μ =
B

Ba
=

2

a2Ba

∫
a

0
rB(r)dr

where at the cylinder surface Ba = B(a) = μoHa. Thus, if the magnetic field
in the specimen Bint is uniform and constant, then the average internal field
is B=(2/a2)Bint[a2/2]=Bint as expected. Substituting for the amplitude
B(r) in (8.7) gives

μ =
2

a2
∫

a

0
r
Jo(u)

Jo(ua)
dr

where

u = mrj3/2, r = uj−3/2/m, dr/du = j−3/2/m, ua = maj3/2.

Hence,

μ =
2

u2
a

∫
ua

0
u
Jo(u)

Jo(ua)
du

Using the identity

¯

¯



(8.20)

(8.21)

(8.22)

∫ uJo(u)du = uJ1(u)

gives the average permeability of the conductor as

μ =
2

ua

J1(ua)

Jo(ua)

Figure 8.3 shows a plot of (8.21) as a function of the ratio conductor
radius to skin depth, a/δ. This latter parameter is independent of frequency
and conductivity. The curves are therefore universal and should apply to
any conductor within the limitations of the model used.

Figure 8.3 Average permeability from (8.21) as a function of the
ratio conductor radius to skin depth, a/δ. (mumt1.eps)

8.3.1 Complex permeability



(8.23)

(8.24)

(8.25)

(8.26)

(8.27)

(8.28)

μ =
2

a2
∫

a

0
r
bero(mr) + jbeio(mr)

bero(ma) + jbeio(ma)
dr =

bero(mr) + jbeio(mr)

bero(ma) + jbeio(ma)

bero =
2

a2
∫

a

0
rbero(mr)dr=1 −

α4

3(2!)2
+

α8

5(4!)2
−

α12

7(6!)2
+ ⋯

beio =
2

a2
∫

a

0
rbeio(mr)dr =

α2

2
−

α6

4(3!)2
+

α10

6(5!)2
+ ⋯

where α = ma/2. Hence,

μ =
(berobero + beiobeio) − j(beiobero − berobeio)

ber2
o + bei2

o

= μ′ − jμ′′

Note that μ'' is due to energy loss and is negative because the device is
passive, that is, there is no energy gain.

8.3.2 Normal and superconducting cylinders
Both Landau et al. [12] and Gormory [80] give the same solution for the
susceptibility of cylindrical normal conductors and superconductors in
parallel ac fields. In this work, the authors tend to use 
kr = mrj√j = −(1 − j)r/δ for the Bessel function arguments. Hence the
amplitude in (8.7) becomes

B(r) = Ba

Jo(kr)

Jo(ka)

The permeability is then

μ =
B(r)

Ba

=
2

a2k2Jo(ka)
∫

a

0
krJo(kr) d(kr)

Using ∫uJo(u)du = uJ1(u) gives

¯̄

¯

¯

¯̄̄̄

¯



(8.29)

(8.30)

(8.31)

(8.32)

μ =
2

ak

J1(ka)

Jo(ka)
, μ′

a = Re [ 2

ua

J1(ua)

Jo(ua)
], μ′′

a = Im [ 2

ua

J1(ua)

Jo(ua)
]

Substituting for the Bessel series gives

μa =
2

ua

J1(ua)

Jo(ua)
=

2

ua

ua

2
− (ua/2)3

1!2!
+ (ua/2)5

2!3!
− (ua/2)7

3!4!
+ ...

1 −
(ua/2)2

(1!)2 +
(ua/2)4

(2!)2 −
(ua/2)6

(3!)2 + ...

where u/2=(ma/2)j√j = αj√j and 
(j√j)

2
= −j, (j√j)

4
= −1, (j√j)

6
= j, 

(j√j)
8
=1, (j√j)

10
= −j, (j√j)

12
= −1… gives

μ =
1 + j α2

2! − α4

2!3! − j α6

3!4! + α8

4!5! + j α10

5!6! − α12

6!7! + ⋯

1 + j α2

1! − α4

(2!)2 − j α6

(3!)2 + α8

(4!)2 + j α10

(5!)2 − α12

(6!)2 + ⋯
, α = ma/2

μ =
(1 − α4

2!3! + α8

4!5! − ⋯) + j( α2

2! − α6

3!4! + α10

5!6! − ⋯)

(1 − α4

(2!)2 + α8

(4!)2 − ...) + j( α2

1!
− α6

(3!)2 + α10

(5!)2 − ⋯)

These equations are identical to those obtained previously, (8.22) to
(8.24). The real and imaginary parts are then obtained from (8.25). Note
that 2!3!=3(2!)2,4!5!=5(4!)2, etc.

8.3.3 Approximations
Using the first and second terms only of the bero and beio series gives

μ =
(1 − α4

2!3! ) + j( α2

2! )

(1 − α4

(2!)2 ) + j( α2

1! )
=

(1 − α4

12 ) + j α2

2

(1 − α4

4 ) + j α2

1



(8.33)

(8.34)

(8.35)

(8.36)

(8.37)

(8.38)

(8.39)

μ =
(1 + α4

6 + α8

48 ) − j α2

2 (1 + α4

12 )

1 + α4

2 + α8

16

Hence,

χ′ = μ′ − 1= −
( α4

3 + α8

24 )

1 + α4

2 + α8

16

≈ −
1

12
(a/δ)4

μ′′ = −χ′′ =
α2

2 (1 + α4

12 )

1 + α4

2 + α8

16

≈ α2/2=
1

4
(a/δ)2

Using δ = √ 2ρ
ωμ

, then

ρ′ =
ωμoa

2

2√12χ′
, ρ′′ =

ωμoa
2

8χ′ ,

These results are equivalent to those obtained by Landau for a long
conducting cylinder in a magnetic field parallel to the cylinder axis and δ
>>a. (converted to SI units by multiplying Landau's results by 4π). Putting
ρ1 = ωμoa2/2, then

ρ′ =
ρ1

√12χ′
, ρ′′ =

ρ1

4χ′′
,

If the theoretical and experimental resistivities are ρth and ρexp,
respectively, then

ρ′
th =

ρ1

√12χ′
th

, ρ′′
th =

ρ1

4χ′′
th

,

ρ′
exp =

ρ1

√12χ′
exp

, ρ′′
exp =

ρ1

4χ′′
exp

,



(8.40)

(8.42)

(8.43)

(8.44)

(8.45)

(8.41)

ρ′
exp

ρ′
th

= √ χ′
th

χ′
exp

,
ρ′′
exp

ρ′′
th

=
χ′′
th

χ′′
exp

Hence, error in ρ′
exp ∝ (1/√χ′

exp and error in ρ′′
exp ∝ 1/χ′′

exp.

8.3.4 Current density and electric field
The current density may be determined from Ampere's law or the point
form of Maxwell's equation curlH = ∂D/∂t + J. Neglecting the displacement
current and using cylindrical co-ordinates noting that Hz is only in the
negative z-direction

H=0aρ + 0aϕ − Hzaz

The terms containing Hρ and Hϕ are zero. Hence,

∇ × H = J = −
1

ρ

∂Hz

∂ϕ
aρ +

∂Hz

∂ρ
aϕ

Hz does not vary with ϕ. Put ρ = r and Hz = Bz/μ where μ = μoμr. Then,
(8.43) becomes

Jϕ =
1

μ

∂B(r)

∂r

Differentiating the amplitude in (8.7), then

dB(r)

dr
=

Ba

Jo(ua)

dJo(u)

dr

Using the identity

∇ × H = ( 1
ρ

∂(−Hz)
∂ϕ −

∂Hϕ

∂z )aρ + ( ∂Hρ

∂z −
∂(−Hz)

∂ρ )aϕ

+ 1
ρ
( ρ∂Hϕ

∂ρ −
∂Hρ

∂ϕ )az



(8.46)

(8.47)

(8.48)

dJo(u)

du
= −J1(u)

and the r to u substitutions in (8.18) and noting that −j3/2 = j1/2, we obtain

Jϕ(r) =
j1/2mBa

μ

J1(u)

Jo(ua)

Assuming Jϕ = σEϕ, then the electric field, Eϕ = ρJϕ, is

Eϕ(r) =
j1/2mBaρ

μ

J1(u)

Jo(ua)

The theoretical current density across the radius of a copper rod is
shown in Figure 8.4. (a) Shows a plot of (8.47) for the current density
modulus ∣J∣ for Ba=1 mT, copper rod radius 4 mm at several different
frequencies. The current density is seen to fall from about 105 Am−2 at the
surface to less than 10−15Am−2 at the conductor centre for the 1 MHz case,
a decrease of more than 20 decades. This result is mirrored on the negative
x-axis in this two-dimensional sectional plot.



Figure 8.4 (a) Current density across the radius of a copper rod
for several frequencies according to (8.47). Applied



(8.49)

(8.50)

(8.51)

(8.52)

(8.53)

field amplitude Ba = 1 mT, copper rod radius 4 mm.
(b) As (a) but complex components of J at 10 KHz.

The electric field determined for r=0 to r = a, (see Appendix A) is

Eϕa =
j1/2ωBa

m

J1(ua)

Jo(ua)

Hence, the current density is

Jϕa =
j1/2mBa

μ

J1(ua)

Jo(ua)

8.3.5 Current density Kelvin functions
In terms of the Kelvin functions the current density equation becomes

Jϕ(r, t) = −
√2Ba

δμ
√ ber′2

o (mr) + bei′2
o (mr)

ber2
o(ma) + bei2

o(ma)
ej(ωt+ϕ2)

The phase angle between current and magnetic field is

ϕ2 =
3π

4
+ tan−1 bei

′
o(mr)

ber′
o(mr)

− tan−1 beio(ma)

bero(ma)

The prime (') in ber' and bei' refers to the Bessel function order 1.

8.4 Total current

The total current is obtained by considering a small area element bdr, where
b is the cylinder length, Figure 8.5. The total current amplitude is then

I = ∫
s

J. ds = b∫
a

0
Jϕdr



(8.54)

(8.55)

(8.56)

(8.57)

Figure 8.5 Calculation of the total azimuthal current from a
section of the conductor

Substituting for (8.47) gives

I = −
mj√jBab

μo

∫
a

0

J1(mrj√j)

Jo(maj√j)
dr

where u = mrj3/2, r = uj−3/2/m, dr/du = j−3/2/m, ua = maj3/2, then

I = −
Bab

μoJo(ua)
∫

ua

0
J1(u)du

Substituting for the identity

∫
ua

0
J1(u)du=1 − Jo(ua)

and inserting the time element gives

I(t) = −
Bab

μo

[1 − Jo(ua)]

Jo(ua)
ejωt

The Bessel functions are dimensionless. The coefficient Bab/μ has
dimensions Am−1m = A as expected. It is also useful to obtain the current
profile across the conductor. In this case using the indefinite integral, we
obtain for the current amplitude



(8.58)

(8.59)

(8.60)

(8.61)

I(r) = −
Bab

μo

[1 − Jo(u)]

Jo(ua)

8.5 Induced voltage

The emf induced into a conducting loop, Figures 8.6(a) and 8.6(b), due to
the perpendicular varying magnetic field is

V (r, t) = −
dΦ

dt
= −

d

dt
∫
s

B(r)ejωt. ds

Figure 8.6 Induced current and electric field in a conducting loop
due to a varying magnetic field normal to the loop. (a)
Flux increasing, (b) flux decreasing, (c) loop geometry

Hence, putting ds = rdrdϕ, Figure 8.6(c), the amplitude is

V (r) = −jω∫
a

o

∫
2π

0
rB(r)dϕdr.

B(r) is in the negative z direction. It is uniform in ϕ varying spatially only
with r. Substituting for B(r) (8.7) into (8.60) gives

V (r) = jω2πBa ∫
a

o

r
Jo(u)

Jo(ua)
dr

For u = mrj3/2, r = uj−3/2/m, dr/du = j−3/2/m, ua = maj3/2, then



(8.62)

(8.63)

(8.64)

(8.66)

(8.67)

(8.68)

(8.65)

V (r) = jω2πBoa
2 ∫

a

o

uJo(u)

u2
aJo(ua)

du

Using the identity: ∫uJo(u)du = uJ1(u), then

V (r) = jω2πBaa
2[ uJ1(u)

u2
aJo(ua)

]
ua

o

Recalling the time element this becomes

V (a, t) = jωπa2Ba

2J1(ua)

uaJo(ua)
ejωt

The bracketed term is found to be the average permeability (8.21).
Hence,

V (a, t) = jπa2ωBa < μ > ejωt

To see how V(r) varies across the conductor, we use the indefinite
integral in (8.62) to give

V (r) = jω2πBaa
2 uJ1(u)

u2
aJo(ua)

.

Substitute for u2
a = (maj3/2)2 and m2 = ωμoσ, then

V (r) = −
2πρBa

μo

uJ1(u)

Jo(ua)

8.5.1 Induced voltage from the electric field
The current and electric field induced in the loop, Figures 8.6 and 8.7, due
to the perpendicular varying magnetic field is

V (r) = ∮
l

E. dl



(8.69)

(8.70)

(8.71)

Figure 8.7 Total current profile for a copper rod using (8.58).
Applied field amplitude Ba = 1 mT, copper rod radius
4 mm, length 5 mm, 1 kHz

where the integral is around the closed path of the loop. Substituting for the
azimuthal electric field (8.48) and integrate around the closed loop gives

V (r) = ∫
2π

0

jωj−3/2Ba

m

J1(u)

Jo(ua)
rdϕ

V (r) =
j−1/22πωBa

m

rJ1(u)

Jo(ua)

As before use substitutes u = mrj3/2 and m2 = ωμoσ, then

V (r) = −
2πρBa

μo

uJ1(u)

Jo(ua)



This agrees with (8.67). A graph osf (8.71) is shown in Figure 8.8 for the
real, imaginary and modulus of V varying across the radius of the
conductor. At this frequency, 1 kHz, these voltages decrease monotonically
from the surface to the centre of the conductor.

Figure 8.8 Induced voltage in a cylindrical conductor due to a
varying axial magnetic field. Applied field amplitude
Ba = 1 mT, f = 1 kHz, copper rod radius 4 mm



(9.1)

(9.2)

(9.3)

Chapter 9
Cylindrical conductors in axial magnetic

fields – impedance

9.1 Impedance from V/I

From the previous calculations of voltage and current we can also obtain
the impedance Z = V/I from the ratio of (8.71) and (8.58). This gives

Z(r) =
2πρ

b

uJ1(u)

1 − Jo(ua)

For the impedance r=0 to r = a, we obtain the impedance from the ratio
of the voltage (8.71) with u = ua to the current in (8.57) to give (see note
23/1/8)

Za =
2πρ

b

uaJ1(ua)

1 − Jo(ua)

This impedance is obtained from the emf generated by the total flux
entering the conductor divided by the total azimuthal current, Figure 9.1.
By substituting for ua = − j1/2ma then

Za = −j1/2mρ(2πa/b)
J1(ua)

Jo(ua)[J−1
o (ua) − 1]



(9.4)

Figure 9.1 Impedance determined from the emf generated by the
flux change divided by the azimuthal current

At low frequencies, taking only the first terms of the Bessel series we
obtain

Za =
2πρ

b

u2
a/2

(ua/2)2
=

4πρ

b

This is shown plotted in Figure 9.2.





(9.5)

(9.6)

(9.7)

(9.8)

(9.9)

Figure 9.2 Impedance Z = V/I for a copper rod using (9.1).
Applied field amplitude Ba = 1 mT, copper rod radius
4 mm, length 5 mm. (a) f=1 kHz and (b) f = 1 MHz

9.1.1 Low-frequency approximations

At low frequencies such that ua ≪ 1 or since ua = maj3/2 = √ 2(a/δ)j3/2, then
for skin depths greater than the conductor radius a, the Bessel functions can
be approximated by taking the first terms only of the series. On expanding
(u/2)2=(maj3/2/2)2 = ωμσa2j3/4, (8.57) yields the approximate current

I(t) =
jωBaσa

2b

4
ejωt

or

I(t) =
ωBaσa

2b

4
[jsin(ωt) − cos(ωt)]

This current amplitude is the same as that obtained for a conducting disc in
an alternating magnetic field where the field is assumed uniform inside the
disc. See references [20] or [83] and Appendix C in this chapter. Similarly,
the low-frequency emf is

Vemf(t) = ωπa2Ba[jsin(ωt) − cos(ωt)]

Also, if ua ≪ 1, then (9.2) becomes

Za =
2πρ

b

u2
a/2

(ua/2)2

and

Za =
4πρ

b

The low frequency power is then



(9.10)

(9.11)

(9.12)

(9.13)

< P >=
I 2
o

2
Re(Z) =

1

2
(ωBaσa

2b/4)
2 4πρ

b

Hence,

< P >=
ω2B2

aσa
4πb

8

The approximate (9.11) and exact power equations are shown plotted in
Figure 9.3(a) and 9.3(c), respectively, where the power is normalised to 
Pn =< P > /B2

a. Also shown plotted is the normalised power equation for
induction heating a cylindrical metal sample [87], where

Pn =
PL

CFB2
a

PL=2aπb(Ba/μo)
2√πρμoμrf

Figure 9.3 Normalised power dissipated in aluminium solid
cylinder, radius 12.59 mm, length 10 mm. (a) Low-
frequency approximation (9.11), (b) induction heater



(9.14)

(9.15)

(9.16)

(9.17)

(9.12) and (c) exact equation normalised to 
Pn = ⟨P⟩/B2

a.

a and b are the radius and cylinder length in (m), respectively. f is the
frequency, C a coupling constant and F a transmission coefficient. These
are not given in the reference but they are not necessary here because of the
normalisation.

9.2 Wave impedance

The intrinsic or wave impedance is defined as follows:

Zi =
Eϕ

Hz
=

Jϕ

σHz
= ρμ

Jϕ

Bz
Ω

Substituting for (8.47) and (8.7) gives

Zi = j1/2mρ
J1(u)

Jo(u)
= −ρ

uaJ1(u)

aJo(u)
.

or

Zi = Zo

J1(u)

Jo(u)

where

Zo = j1/2mρ = j1/2(ωμ/σ)1/2=(1 + j)ρ/δ

is the wave impedance of a semi-infinite good conductor defined by σ/
ωε>10 [20].

This is shown plotted in Figure 9.4 and Figure 9.5.



Figure 9.4 Wave impedance determined from E/H using (2.101).
Applied field amplitude Ba=1 mT, copper rod radius 4



mm. (a) f=1 kHz and (b) f=1 MHz



(9.18)

(9.19)

(9.23)

(9.20)

(9.21)

(9.22)

Figure 9.5 Impedance-frequency characteristics (a) wave
impedance Z = E/H (9.16) and (b) impedance Z = V/I
(9.2). Applied field amplitude Ba=1 mT, copper rod
radius 4 mm, length 5 mm, r = a=4 mm.

9.2.1 Average wave impedance
The average wave impedance is defined by

Z i =
2

a2
∫

a

0

rZ(r)dr

If Z(r) = Z1 is uniform and constant, then the average internal
impedance is Z=(2/a2)Z1 ∫ a

0 rdr=(2/a2)Z1(a2/2)=Z1 as expected.
Substituting (2.101) into (9.18) and converting to the variable u gives

Z i =
2j1/2ρ

a2m
∫

a

0

u
J1(u)

Jo(u)
du.

9.2.2 Average impedance and permeability
Substitute the permeability from (8.21) into (9.16) to give

Zϕa = Zo(ua/2)<μr > Ω

Substitute for ua = maj3/2, then

Zϕa = −ωμo(a/2)<μr >

or in terms of the real and imaginary components of <μr > ,

Zϕa = −ωμo(a/2)<μ′ − jμ′′ >

Using approximate values of <μr > from (8.34) and (8.35)

μ′=1 + χ′ ≈ 1 −
1

12
(a/δ)4

1

¯

¯

¯



(9.24)

(9.25)

(9.26)

(9.27)

(9.28)

(9.29)

μ′′ = −χ′′ ≈ α2/2=
1

4
(a/δ)2

gives the quadrature components of the impedance

Z ′
ϕa =

ωμoa

2
[1 −

1

12
(a/δ)4]

Z ′′
ϕa =

ωμoa

8
(a/δ)2

9.2.3 Power dissipation
The relationship between power flow and impedance is given by (see p. 59,
(3.102)),

< P >=
H 2

o

2
Re[Z(ω)] =

E 2
o

2
Re[1/Z(ω)] Wm−2

Substitute (8.7), (8.48) and (9.22) into (9.27) gives

< P >= −
1

2
(

BaJo(u)

μoJo(ua)
)

2

ωμo(a/2)<μ′ >

and

< P >= −
a

4
( j1/2ωBaρJ1(u)

μoJo(ua)
)

2

ωμo < μ′ > Wm−2

9.3 Conducting-superconducting mixed state

9.3.1 Impedance from E/H
The impedance of the cylindrical conductor, which also contains
superconducting regions, that is, the mixed state, may be considered by
using the substitution ua = maj3/2 = jγa, (ua/2)2 = − (γa/2)2, where



(9.31)

(9.32)

(9.33)

(9.35)

(9.36)

(9.37)

(9.30)

(9.34)

γ 2 = λ−2 + j(2/δ2).

λ is the superconducting penetration depth which in the weak field limit
is given by the Gorter–Casimir equation

λ(T ) = λo[1 − (T/Tc)
4]

−1/2

where λo is the penetration depth as T → 0 and Tc is the critical
temperature. For YBCO, λo=150 nm and Tc=93 K.

Substituting ua = jγa in (9.15), Zϕ = −ρ
uaJ1(u)

aJo(u) , gives

Zϕ = −jγρ
J1(ua)

Jo(ua)
.

Re-write the permeability (8.21) as

J1(ua)

Jo(ua)
=< μr >

ua

2

and substitute into (9.32)

Zϕ = −jγρ(ua/2)<μr > .

Then, substitute for ua = jγa to give

Zϕ = γ 2ρ(a/2)<μr > .

Substitute for the permeability as in (9.25) and (9.41) to give

Zϕ = γ 2ρ(a/2)<μ′ − jμ′′ > .

Zϕ =
ρa

2
[( μ′′

λ2
−

2μ′

δ2
) + j( μ′

λ2
+

2μ′′

δ2
)]

We can then approximate as follows:

1



(9.38)

(9.39)

(9.40)

(9.41)

(9.44)

(9.42)

(9.43)

μ′ ≈ 1 +
1

3
(γa/2)4

μ′′ = −χ′′ ≈
j−1(γa)2

8

gives the quadrature components of the impedance

Z ′
ϕ = j

γ 2ρa

6
[3 + (γa/2)4]

Z ′′
ϕ =

γ 4ρa3

16

9.3.2 Superconductor with mutual coupling
Assume that the supercurrent couples magnetically with the normal current.
This may be modelled by an equivalent circuit of a normal inductance Ln in
parallel with a superinductance Lλ, as discussed previously on p. 44, Figure
2.10. This resulted in a general equation for the propagation constant which
applied to a normal conductor, superconductor or dielectric, depending on
the choice of equivalent circuit. The previous analysis concerned an electric
field applied to a rectangular slab. The analysis is repeated here, but for a
cylindrical conductor in an applied axial magnetic field. The current density
is now given by

∇ × Hz = Jϕ = yTE = Iϕ/(ba)

The specific admittance is

yT = YTg; g = d/A=2πa/ba=2π/b

where g is a geometrical constant for currents flowing around the axis of the
cylinder, where d is the length of the current path, A is the cross-sectional
area, a is the cylinder radius and b is the cylinder length. From Maxwell's
first (3.46)

∇ × Eϕ = −μ
∂Hz

∂t



(9.45)

(9.47)

(9.48)

(9.50)

(9.51)

(9.52)

(9.46)

(9.49)

∇ × ∇ × Eϕ = −μ
∂∇ × Hz

∂t
= −μ

∂yTEϕ

∂t
.

Using

∇ × ∇ × E = ∇(∇. E) − ∇2
E

and assuming ∇. E = ρv/ε=0, then

∇2
Eϕ − μ

∂yTEϕ

∂t
=0

For sine waves

∇2
Eϕ = jωμyTEϕ

Comparing this with the general Helmholtz (2.57) for E gives for the
propagation constant

γ 2 = jωμyT

where

yT = gYT = gZ−1
T = g(Z−1 + Z−1

l )

where Zl is a leakage impedance and Z is the impedance of two inductors in
parallel given by Raven [47]

Z =
Z1Z2 − X 2

M

Z1 + Z2 − X 2
M

where XM = jωM is the mutual inductive reactance coupling the two
inductors. The mutual coupling is defined by

M = k√L1L2 = k√LnLλ

where k is the coupling coefficient which is expected to be close to unity for
a simple superconductor.



(9.54)

(9.55)

(9.56)

(9.57)

(9.53)

For the case of normal current coupling with a supercurrent, Figure
2.10, then

Z1 = Zn = Rn + jωLn, Z2 = Zλ = Rλ + jωLλ, XM = jωM

where Zn, Rn, Ln are normal impedance, resistance and inductance,
respectively. Zλ, Rλ, Lλ are superconducting impedance, resistance and
inductance, respectively. Equation (9.49), then becomes

γ 2 = jωμg(Z−1 + Z−1
l )

γ = jωμg[
Z1 + Z2 − X 2

M

Z1Z2 − X 2
M

+ Z−1
l ]

To check this put XM=0, Z2 = ∞, Z1 = Rn, 1/Zl = jωCn. Hence,

γ 2 = jωμg(jωCn + 1/Rn) = −ω2μgCn + jωμg/Rn = −ω2με + jωμσ

This agrees with (2.58). Note that if ε or μ is a complex, then the real
and imaginary parts of (9.55) are modified. The azimuthal impedance of a
type II superconducting rod in an axial magnetic field is then given by
(9.15), restated here as

Zϕ = −ρ
uaJ1(ua)

aJo(ua)

where ua = jγa and γ from (9.55). These results may be compared with the
impedance determined from V/I (8.58,8.71) and compared with known
values of impedance determined experimentally, [56,84–86f]. These results
expressed by (9.57) apply to any conductor, dielectric or superconductor,
depending upon the choice of the equivalent circuit parameters.

9.4 Theoretical results

⎷



Figure 9.6 (MU12g2.ep) shows plots of μ' and μ'' versus δ/a using (8.25)
and 1, 2 and 5 terms from the Bessel series. Note agreement between 2 and
5 terms for δ/a≥1.5. The data was obtained using BASIC programmes
MU12g2.BAS, which produced data file MU12g2.DAT. This was plotted
using Easyplot, which produced plot MU12g2.EP. All files are contained in
the root directory AAbes and subdirectories BASIC, Figs and Tex.

Figure 9.6 Complex permeability dependence on skin depth/rod
radius from Bessel functions(mu12g2.eps)

Figure 9.7 (MU12gb.ep) shows plots of μ' and μ'' versus ρ/ρ1, where ρ1 =
ωμoa2/2. If ρ1 and μ are known then the sample resistivity can be
determined from this universal graph.



Figure 9.7 Complex permeability dependence on resistivity from
Bessel functions(mu12gb.eps)

9.5 Experimental results

9.5.1 Resistivity measurements
The resistivity of a copper rod, dimensions 30 mm long and 4 mm in
diameter, was measured by passing direct currents of up to 50 A through the
rod and measuring the voltage drop using four-terminal techniques and a
high-impedance digital voltmeter. The current was then reversed, and the
mean value obtained. The I/V results are shown in Figure 9.8 for
measurements at room temperature and 77 K. The mean distance between
the voltage contacts was l̄=8.81 mm. This yielded resistivities of ρ=2.81



nΩ m at 77 K and ρ=23.5 nΩm=2.35 μΩ cm at 300 K for this particular
sample.

Figure 9.8 Current voltage characteristics for a copper rod at 77
K and room temperature (RT/10)(rodv2.eps)

9.5.2 Susceptibility measurements
The susceptibility of the above copper rod was measured using a
differential ac susceptometer [81,82]. The applied field amplitude ranged up
to about 25 mT at several different frequencies. All measurements were
carried out at a temperature of 77 K. Figure 9.9 (curoda1b.ep) shows
complex differential voltages V ′

D,V ′′
D  obtained from the copper rod

described above at frequencies of 20, 50 and 100 Hz.



(9.58)

Figure 9.9 (Measured complex differential voltage VD at 77 K as
a function of applied magnetic field Bo for several
frequencies, determined using a magnetic
susceptometer(tcua1b2.eps)

The susceptibility was calculated from the differential voltage
measurements using

χ′
ext =

V ′
D

VDo
, χ′′

ext =
V ′′
D

VDo

where VDo = α(Ns/Ls)vmωBo, α=0.5498, Ns=2500, Ls=0.013 m, vm = πr2l,
l=0.03 m, r=0.002 m. Putting VDo = uBo gives u(20 Hz) = 5.022, u(50 Hz)
= 12.5566 and u(100 Hz) = 25.113. Figure 9.10(curada2.ep) shows plots of



χext obtained directly from Figure 9.9 using (9.58) and the above values of
VDo. The mean values obtained are listed in Table 9.1.

Figure 9.10 Complex susceptibility determined directly from the
differential voltage measurements in Figure
9.9(curoda2.eps)

Table 9.1 Comparison of theoretical and measured mass
susceptibilities of copper at 77 K. Mass susceptibility χm
= (μr − 1)/ρCu (MUCU0B.BAS).

f
Hz

χ′
ext ×

10−4
χ′′
ext

×10−3
−χ′

th

×10−8
χ′′
th

×10−6
−χ′

exp

×10−8
χ′′
exp

×10−6
ρ'

nΩm
20 1.84 2.78 11.8 3.15 2.059 0.307 6.75
50 5.52 6.65 73.6 7.82 6.177 0.744 9.76
100 11.45 12.77 287 15.3 12.822 1.43 13.57



Theoretical and experimental ac mass susceptibilities for copper are
listed in Table 9.1. The theoretical values were determined from five terms
of the Bessel series. At these frequencies, only a small error is introduced
using two terms of the Bessel series or (8.34) and (8.35). Also, the error due
to demagnetisation effects is negligible. In these calculations, the specimen
dimensions were those used in the experiment, and the resistivity
corresponded to the measured dc value of 2.81 nΩm. at 77 K. The literature
value of the mass susceptibility at 100 K is χm = − 0.113 × 10−8m−3. The
final column in this table shows the resistivity calculated from (8.36) using
measured χ values. This result is also shown plotted in Figure 9.11
(LGf2.ep).

Figure 9.11 Resistivity calculated from (8.36) using measured χ
values(LGf2.eps)



Chapter 10
Hollow cylindrical conductors

10.1 Introduction

In this chapter and the following chapter, the dc and ac properties of copper
tubes are examined, respectively. Tubular conductors are important in many
areas of electrical engineering and physics, ranging from power frequencies
to microwaves. Copper or aluminium tubes are also widely used as busbars
in HV substations [101]. Compared with solid busbars, they are apparently
lighter and cheaper to manufacture [102]. These busbars must be able to
withstand very high transient currents and voltage switching transients. The
recent disaster at the Hayes substation, which caught fire and shut down
Heathrow airport for a day, indicates the importance of reliable busbars
[103]. However, the exact cause of this disaster has not yet been discovered.

10.2 Cu tube resistivity, density and – axial dc
measurements

In the following, we have analysed standard Cu–DHP copper tubes
(deoxidised oxygen-free copper) [100]. Firstly, dc properties and then ac
properties are presented. For steady state dc measurements on tubes, the
analysis and measurements are relatively simple compared with the ac case,
since for dc, the tube geometry and resistivity determine the resistance. For
measurements on Cu–DHP copper tubes, the resistivity of the copper is



(10.1)

(10.2)

(10.3)

(10.4)

higher than pure copper due to the presence of phosphorus in the
manufacture of the tubes, [100]. The phosphorus, at between 0.015% and
0.04%, is included to improve the mechanical performance of the tubes.
However, this raises the resistivity of the copper from 17 nΩm for pure
copper to about 21.7 nΩm for Cu–DHP copper.

In the dc case the measured resistivity is obtained from

ρ =
AtRt

le

where Rt is the tube resistance, le is the electrical length between the
voltage contacts. At is the tube cross sectional area. This is simply given by

At = π(r2
od − r2

id)

where rod and rid are the outer and inner tube radius, respectively.
Alternatively, if the thickness of the tube wall tw is measured then At is
given approximately by

At = π(rod − tw/2)2

The resistivity was measured using dc four terminal I/V techniques. The
high and low currents HI, LI, were injected and extracted to the ends of the
tube, respectively. The high and low voltages HV, IV were measured a few
cm from the current terminals. The current and voltage terminals were
made either by soldering wires to the copper tube or using copper wire rings
screwed tightly to the tubes. Constant currents up to 3 A were supplied
from a programmable power supply, Tenma 72-2720. The voltages
measured using a high-input impedance digital voltmeter, Solartron 7150+,
range 0.2 V, 6.5 digit sensitivity 100 nV, impedance ≥10 GΩ. The I/V
results for several specimens are shown in Figure 10.1. The curve fits for
the data are given by

Vwir2.1=0.676I − 8.10 × 10−4, maxdevn:0.00130

Vtu10L=2.86I + 6.79 × 10−4, maxdevn:0.00421

Vtu15L2=0.0650I − 6.43 × 10−4, maxdevn:0.0264



Figure 10.1: DC I/V measurements for copper wire wir2.1 and
tubes tu10L, tu15L2. See Table 10.1

This method of determining the tube cross sectional area (10.2) gave
good results for solid copper wire, Table 10.1.

Table 10.1 Cu tube resistivity and density measurements

Sample Resistivity
nΩm

Error
%

Density
kgm−3

Error
%

Cu 17 0 8930 0
Cu–DHP 21.74 0 8900 0



(10.5)

Sample Resistivity
nΩm

Error
%

Density
kgm−3

Error
%

Wire 2.1
mm

17.2 1 9078 1.6

tu10L 20.58 −5 8495 −4.5
tu10Ls1 19.5 −10 8837 −1
tu10Ls2 20.6 −5 8436 −5
tu15L2 23.34 7 9130 2
ring28 29.34 10 9044 1.3

However, for copper tubes, this gave erroneous results. Possibly
because the radius varied slightly along the length of the tube, making a
significant variation in the area At.

A superior method was to immerse these samples in water and measure
the volume of water displaced, vd, as described below. Using this
displacement measurement technique, the copper tube agreed to within a
few per cent of the density of Cu–DHP, Table 10.1. The tube area is then
given by

A =
vd

lt

where lt is the tube length, from this the resistivity was obtained from
(10.1). The values obtained also agreed with the Cu–DHP resistivity within
a few percent, Table 10.1.

In Table 10.1 the copper wire was 2.1 mm diameter, total length 22.4
cm, weight 7.042 g. This gave a density of 9078 kg m−3. The I/V
measurements gave an average resistance of 0.676 mΩ for an electrical
length 13.6 cm long. The cross-sectional area of the wire was 3.463 mm2.
This gave a resistivity of ρ=17.2 nΩm.

The sample tu10L refers to a hollow copper tube with a diameter of 10
mm, a wall thickness of 0.7 mm, a total length of 3.04 m, an electrical
length of 2.84 m, bent into a loop (U shape) with gap of 10 mm between
plastic bars, Figure 10.3. The following details were etched on the tube:
“BS1057 OUTOKUMPU tube-e. Premium 10x0.7 WWW tube-e.com”.



Figure 10.3 Specimens top to bottom: tu10L, tu15L, and tu15L2.
Refer to Table 10.1

The distance between voltage contacts was 284 cm. The I/V
measurements, Figure 10.2, yielded and average resistance of 2.859 mΩ
and resistivity ρ=20.58 nΩm. The tube weight was 528.1 g. This gave a
density of 8495 kgm−3.



Figure 10.2 Cu tube, 304 cm long 10 mm diameter. DC I/V
measurements. Yields Rave = 2.86 mΩ. This gives
resistivity ρ=20.58 nΩm. See Table 10.1.

Specimens tu10Ls1, Ls2 were copper strips taken from tu10L ends.
Specimens tu15L2 was a copper tube 15.87 mm average outer diameter,

average wall thickness 0.946 mm total length 16.7 cm, electrical length
between voltage contacts 11.5 cm. The I/V measurements yielded an
average resistance R=65 μΩ, resistivity 23.34 nΩm.

10.2.1 Measurement of sample volume by water displacement –
Archimedes principle [99]

The sample was placed in a plastic tube sealed at the bottom (Figure 10.4).
A mark was made on the tube wall m1 where the maximum height of the
sample occurred. The sample was then removed, and water was inserted
into the mark m1 on the wall. The sample was then re-inserted and a second
mark m2 made where the water reached. The displacement length was then
given by m2 − m1.

Figure 10.4 Containers for measuring specimen volumes by the
water displacement method (a) large specimens and
(b) small specimens

For example, sample tu15L2. The increase in water volume after
inserting the Cu tube was 6.9 ml as measured with a syringe. The tube



(10.6)

(10.7)

weight was 63 g. Hence the mass density was 63/6.9=9.13 gcm−3 or 9130
kgm−3. This is 2% higher than that given for Cu–DHP, see Table 10.1.

10.3 Inductance of a hollow tube and solid
cylindrical conductor

Equations for the inductance of a solid wire are well known [20]. Equations
for the inductance of tubular conductors are also available [106]. However,
James Clerk Maxwell was one of the first to derive expressions for these
conductors, and we briefly give details of his results.

In the theory due to Maxwell [3] for the inductance of tubes, we assume
a very long loop with forward and return tubes and consider only a small
section of the loops far from the ends. The length of the tube is considered l,
the internal radius is a2, the outside radius is a1 and the distance between
the forward and return tube axes, b. Using magnetic induction and the
kinetic energy for this arrangement, Maxwell obtained the inductance as
follows:

L/l=2μe ln
b2

a1a1′
+

μi

2
[
a2

1 − 3a2
2

a2
1 − a2

2

+
4a4

2

a2
1 − a2

2

ln
a1

a2
] + [‵‵(′)]

where μe is the relative permeability outside the conductor and μi the value
inside the conductor. The equation in the second square brackets applies to
the return tube. This equation is the same as the first except that all terms
are replaced by primes ('). If the conductors are solid wires, a2 and a′

2 are
zero then

L/l=2μe ln
b2

a1a
′
1

+
μi + μ′

i

2

Converting to SI units by putting μe = μe/4π and μi = μi/4π we obtain
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(10.10)

(10.11)

L/l =
μe

2π
ln

b2

a1a
′
1

+
μi

8π
[
a2

1 − 3a2
2

a2
1 − a2

2

+
4a4

2

a2
1 − a2

2

ln
a1

a2
] + [‵‵(′)]

and for a solid wire

L/l =
μe

2π
ln

b2

a1a
′
1

+
μi + μ′

i

8π

If a1 = a′
1, a2 = a′

2, and μi = μ′
i the tube inductance is then

L/l =
μe

π
ln

b

a1
+

μi

4π
[
a2

1 − 3a2
2

a2
1 − a2

2

+
4a4

2

a2
1 − a2

2

ln
a1

a2
]

and the inductance of a solid wire is

L/l =
μe

π
ln

b

a1
+

μi

4π

As mentioned, an expression similar to (10.10) was obtained using flux
linkages in a tubular conductor [106]. Equation (10.11) for a solid wire has
also been derived using vector potentials [20].

Maxwell points out that “If the wires are magnetic, the magnetism in
them will disturb the magnetic field and we cannot apply the preceding
reasoning. Equations (10.6) and (10.7) are only strictly true for 
μi = μ′

i = μe”. However, ferromagnetic conductors can be considered,
provided they are not magnetised, but this may be difficult to avoid.
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Chapter 11
Hollow cylindrical conductor – axial AC:

experimental measurements

11.1 Introduction

In this chapter, we present some experimental impedance measurement
results obtained from hollow cylindrical conductors and compare these with
theory. The experimental techniques employed include Hewlett-Packard
Gain-Phase Meter (GPM) HP3575A, Racal LCR Meter 9343M, Wayne
Kerr Universal Bridge B224, and HP Impedance Analyzer HP4192A. All
the instruments were 4-terminal techniques except the GPM, which was
two-terminal. The four terminal techniques reduce parasitic external error
terms. In the GPM case, a process of de-embedding was used, which
involved cancelling out parasitic external error terms [104]. The GPM
technique had the significant advantage of permitting the application of
higher drive currents.

11.2 Tube impedance theory

A widely used equation for determining the internal impedance of a tubular
conductor, internal radius q, and outside radius r, is given by [106]

Z = ρm/(2πqD)[I0(mq)K1(mr) + I1(mr)K0(mq)]
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(11.2)

where

D = [I1(mr)K1(mq) − I1(mq)K0(mr)]

In these equations, I and K are modified Bessel functions of the first kind, ρ
is the resistivity of the conductor and

m = √jωμσ

The theoretical results using equation 11.1 are shown plotted in Figure 11.1.

Figure 11.1 Frequency dependance of impedance and inductance
for a hollow copper tube showing skin effect. See
Chapter 11, (11.1). In this example the tube length was
3.04 m with inner radius 4.3 mm and outer radius 5
mm.



11.3 Experimental results

Figure 11.2 shows impedance results obtained from sample tu10L
previously described in chapter 10 and Table 10.1. Experiments from GPM
measurements [1,104] and theory using (11.1).

Figure 11.2 AC resistance of a long hollow Cu-DHP tube, 10 mm
dia 3.04 m long, sample tu10L. Theory from (11.1).
Experimental measurements using gain phase meter
(GPM) HP3575A, Impedance Analyzer HP4192A, AC
Bridge Wayne Kerr B224, LCR meter databridge
9343M.

Figure 11.3 shows inductance results obtained from the same sample
tu10L. The average inductance is about 1.8 μH.



Figure 11.3 Experimental inductance measurements of 10 cm dia
Cu Tube tu10L. GPM, [104], with PA and Rs = 3.305
Ω, 35 nH. FG = 1 Vrms. Wayne Kerr Bridge B224,
Racal LCR Databridge 9343M.

The dc inductance obtained from (10.10) gives a total value of 1.11 μH.
This is considerably lower than the measured ac value. However, the
calculated value of the external value is Le = 1.8214 μH, which is closer to
the measured value of 1.8 μH.

The dc inductance was calculated for sample tu10L with dimensions in
m: l=1.52, a1=5.1e − 3, a2=4.31e − 3, and b=0.1. This gives for the
inductances in μH: external Le = 1.8214, internal Li = −0.7114 and total
L=1.11.
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Chapter 12
Hollow cylindrical conductor – impedance analysis

Much of the analysis on solid cylindrical conductors can be modified and applied to the case
of a long hollow cylindrical conductor or tube. DC analysis and testing, along with a
simplified ac analysis based on one skin depth, have already been considered. In this chapter,
we consider the detailed analysis based on Bessel functions[115]. Conducting tubes excited by
an axial magnetic field are considered further on.

12.1 Current density

As for solid cylinders, we consider an ac generator driving a constant current I = Ioejωt parallel
to the z-axis of the tube. The tube has outside radius a, inside radius b, and length l. The
following analysis is initially similar to the solid cylindrical conductor case. Still, in this case,
for tubular conductors, the Bessel function solutions need to include Bessel functions of the
second kind.

For a good conductor with current flowing in the z-direction, and assuming the
displacement current is zero, then

Jz = σEz, Ez = ρJz

Equation (5.9) becomes

∂ 2Jz

∂r2
+

1

r

∂Jz
∂r

− μσ
∂Jz
∂t

=0.

12.1.1 Sine waves

For sine waves, Jz(r, t) = Jzejωt and ∂/∂t = jω, (12.2) becomes

∂ 2Jz

∂r2
+

1

r

∂Jz
∂r

− jωμσJz=0

Putting



(12.4)

(12.5)

(12.15)

(12.6)

(12.7)

(12.8)

(12.9)

(12.10)

(12.11)

(12.12)

(12.13)

(12.14)

u = mrj3/2, m = √(ωμσ)

∂ 2Jz

∂u2
+

1

u

∂Jz
∂u

+ Jz=0

Hence J and E fields are given by a zero order Bessel equation with complex argument u,
where u = mrj3/2. The general solution is given by

Jzr = AJo(u) + BNo(u)

where Jo(u) and No(u) are zero order Bessel functions of the first and second kind,
respectively. (See the general Appendix.)

For the outer surface of the cylinder r = b, the solution is

Jzb = AJo(ub) + BNo(ub)

For the inner surface of the cylinder r = a, the solution is

Jza = AJo(ua) + BNo(ua)

where both Jza and Jzb are constants for a given frequency. Solving (12.7) and (12.8) for A
and B, respectively.

A = [JzbNo(ua) − JzaNo(ub)]/D

B = [JzaJo(ub) − JzbJo(ua)]/D

D = Jo(ub)No(ua) − Jo(ua)No(ub)

Although we know Jzb because this is the applied current. Jza is unknown but can be
obtained by differentiating Jzb and Jza wrt ub and ua as indicated by the prime (′).

J ′
zb=0=AJ ′

o(ub) + BN ′
o(ub)

J ′
za=0=AJ ′

o(ua) + BN ′
o(ua)

Both J ′
za and J ′

zb are zero because these fields are constants at the surfaces a and b. Hence,

AJ ′
o(ub) + BN ′

o(ub) = AJ ′
o(ua) + BN ′

o(ua)

A

B
=

N ′
o(ua) − N ′

o(ub)

J ′
o(ub) − J ′

o(ua)

Abbreviate the parameters



(12.16)

(12.17)

(12.21)

(12.22)

(12.23)

(12.24)

(12.25)

(12.26)

(12.18)

(12.19)

(12.20)

For (12.76) and (12.7), substitute for A and B from (12.9), (12.10), and (12.11)

Jzr =
JzbNa − JzaNb

D
Jr +

JzaJb − JzbJa

D
Nr

Jzb =
JzbNa − JzaNb

D
Jb +

JzaJb − JzbJa

D
Nb

where

D = JbNa − JaNb

From (12.16) and (12.17) put

c1 = a1x + b1y

c2 = a2x + b2y

where

Solving (12.19) and (12.20) for x and y

x =
c1b2 − c2b1

a1b2 − a2b1

y =
a1c2 − a2c1

a1b2 − a2b1

Substituting for the parameters from (12.21) gives

A =
JzbNr − JzrNb

JbNr − JrNb

B =
JzrJb − JzbJr

JbNr − JrNb

Hence,

A

B
=

JzbNr − JzrNb

JzrJb − JzbJr
=

N ′a − N ′b
J′b − J′a

Solving for Jzr gives

Jo(ur) = Jr, Jo(ua) = Ja, Jo(ub) = Jb

No(ur) = Nr, No(ua) = Na, No(ub) = Nb

Jz(ub) = Jzb, Jz(ua) = Jza, Jz(ur) = Jzr

c1 = Jzb, a1 = Jb,x = A, b1 = Nb, y = B, c2 = Jzr, a2 = Jr,

x = A, b2 = Nr, y = B



(12.27)

(12.28)

(12.29)

(12.30)

(12.31)

(12.33)

(12.34)

(12.35)

(12.36)

(12.32)

Jzr = Jzb
NrK1 − JrK2

NbK1 − JbK2

where K1 = J ′
a − J ′

b, K2 = N ′
a − N ′

b  are constants for fixed frequency.
Obtaining the surface current density at a from (12.27), where Nr becomes Na and Jr

becomes Ja gives

Jza = Jzb
NaK1 − JaK2

NbK1 − JbK2

Inserting the full parameters gives

Jz(ur) = Jz(ub)
No(ur)K1 − Jo(ur)K2

No(ub)K1 − Jo(ub)K2

Jz(ua) = Jz(ub)
No(ua)K1 − Jo(ua)K2

No(ub)K1 − Jo(ub)K2

where K1 = J ′
o(ua) − J ′

o(ub), K2 = N ′
o(ua) − N ′

o(ub) are constants for fixed frequency.

12.1.2 Wave impedance
The wave impedance is defined by

Zz =
Ez

Hϕ

where Ez is given by

Ez = ρJzr

ρ is the resistivity of the metal tube. Jzr is given by (12.77) and Hϕ by (5.97).

Hϕ(r) =
1

jωμ

dEz

dr

Hϕ(u) = mj−1/2 dEz

du

From (12.32)

Hϕ = mρj−1/2 dJzr

du

The impedance at r then becomes

Zz(ur) =
Ez

Hϕ
= mρj−1/2 Jz(ur)

J ′
z(ur)

, Ω



(12.37)

(12.39)

(12.38)

(12.41)

(12.42)

(12.43)

(12.44)

(12.45)

(12.40)

Inserting the full parameters gives

Zz(ur) = mρj−1/2 No(ur)K1 − Jo(ur)K2

N ′
o(ur)K1 − J ′

o(ur)K2
, Ω

Since

J ′
o(u) = −J1(u), N ′

o(u) = −N1(u)

Zz(ur) = −mρj−1/2 No(ur)[J1(ua) − J1(ub)] − Jo(ur)[N1(ua) − N1(ub)]

N1(ur)[J1(ua) − J1(ub)] − J1(ur)[N1(ua) − N1(ub)]
, Ω

where K1 = −  [J1(ua) − J1(ub)], K2 = −  [N1(ua) − N1(ub)].

12.2 Current amplitude

The current supplied to the tube is given by

I = Ioe
jωt

where Io is the amplitude.

Io = ∫
b

a

Jz(r)ds = ∫
b

a

Jz(r)2πrdr

From (12.4)

u = mrj3/2, r = u/(mj3/2), dr = du/(mj3/2), rdr = udu/(m2j3)

Hence

Io =
2π

m2j3
∫

b

a

Jz(u)udu

From (12.77)

Jz(ur) = Jz(ub)
No(ur)K1 − Jo(ur)K2

No(ub)K1 − Jo(ub)K2

where K1 = J ′
o(ua) − J ′

o(ub), K2 = N ′
o(ua) − N ′

o(ub) are constants for fixed frequency.
Substituting for Jz(ur) gives

Io =
2πK3

m2j3
∫

b

a

[No(ur)K1 − Jo(ur)K2]udu



(12.47)

(12.48)

(12.49)

(12.50)

(12.46)

(12.51)

(12.52)

(12.53)

(12.55)

(12.54)

where

K3 = Jz(ub)/[No(ub)K1 − Jo(ub)K2]

The Bessel function integrals are given by

∫ uJo(u)du = uJ1(u), ∫ uNo(u)du = uN1(u)

Io =
2πK3

m2j3
[uN1(ur)K1 − uJ1(ur)K2]ba

Io =
2πK3

m2j3
[ubN1(ub) − uaN1(ua)]K1 − [ubJ1(ub) − uaJ1(ua)]K2

The average current density in the tube is the current amplitude divided by the tube wall
cross-sectional area

Jz(ave) = Io/S =
Io

π(a2 − b2)

12.3 Internal impedance

The internal impedance of the tube is given by (5.75)

Zi(r) = ρl
Jz(r)

Io

Zi(r) =
ρlJz(ub)

Io

No(ur)K1 − Jo(ur)K2

[No(ub)K1 − Jo(ub)K2]

Io =
2πK3

m2j3
[ubN1(ub) − uaN1(ua)]K1 − [ubJ1(ub) − uaJ1(ua)]K2

K3 = Jz(ub)/[No(ub)K1 − Jo(ub)K2]

Zi(r) =
ρlm2j3[No(ur)K1−Jo(ur)K2]

2π{[ubN1(ub)−uaN1(ua)]K1−[ubJ1(ub)−uaJ1(ua)]K2}

ρlm2j3 = −jρlωμσ = −jωμ Ωm−1.

Zi(r) =
jωμ[Jo(ur)K2 − No(ur)K1]

2π{[ubN1(ub) − uaN1(ua)]K1 − [ubJ1(ub) − uaJ1(ua)]K2}
Ωm−1

where K1 = − [J1(ua) − J1(ub)], K2 = − [N1(ua) − N1(ub)] or



(12.57)

(12.58)

(12.56)

(12.60)

(12.61)

(12.62)

(12.63)

(12.64)

(12.65)

(12.66)

(12.59)

K1 = [J1(ub) − J1(ua)], K2 = [N1(ub) − N1(ua)]

Zi(r) =
jωμ{[Jo(ur)[N1(ub) − N1(ua)] − No(ur)[J1(ub) − J1(ua)]}

2π{[ubN1(ub) − uaN1(ua)]K1 − [ubJ1(ub) − uaJ1(ua)]K2}
Ωm−1

Zi(r) =
jωμ

D
{[Jo(ur)[N1(ub) − N1(ua)] − No(ur)[J1(ub) − J1(ua)]} Ωm−1

where

D=2π{[ubN1(ub) − uaN1(ua)]K1 − [ubJ1(ub) − uaJ1(ua)]K2}

12.4 Average current density

The average current density is defined by

Jave =
1

S
∫
s

Jz(r)dS

where S is the cross-sectional area of the current path. Which, in this case, is a tube with cross-
sectional area S = π(b2 − a2). Hence,

Jave =
1

π(b2 − a2)
∫

b

a

Jz(r)2πrdr

From (12.4)

u = mrj3/2, r = u/(mj3/2), dr = du/(mj3/2), rdr = udu/(m2j3)

Hence

Jave =
2π

π(b2 − a2)m2j3
∫

b

a

Jz(u)udu

From (12.77)

Jz(ur) = Jz(ub)
No(ur)K1 − Jo(ur)K2

No(ub)K1 − Jo(ub)K2

Jave = K4K5[∫
b

a

No(ur)K1urdu − ∫
b

a

Jo(ur)K2urdu]

where

K4=Jz(ub)/[No(ub)K1 − Jo(ub)K2]



(12.67)

(12.68)

(12.69)

(12.71)

(12.72)

(12.73)

(12.74)

(12.75)

(12.70)

K5=
2π

π(b2 − a2)m2j3

The Bessel function integrals are given by

∫ uJo(u)du = uJ1(u), ∫ uNo(u)du = uN1(u)

gives

Jave = K4K5[∫
b

a

No(ur)K1urdu − ∫
b

a

Jo(ur)K2urdu]

Jave = K4K5{[ubN1(ub) − uaN1(ua)]K1 − [ubJ1(ub) − uaJ1(ua)]K2}

12.5 Average internal impedance

The average internal impedance of a metal tube length l, supply current amplitude Io, is given
by (5.75)

Zi(ave) = ρl
Jave

Io

Zi(ave) =
2πρlJz(ub)

π(b2 − a2)m2j3

{[ubN1(ub) − uaN1(ua)]K1 − [ubJ1(ub) − uaJ1(ua)]K2}

Io[No(ub)K1 − Jo(ub)K2]

Zi(ave) =
2 ρ2lJz(ub)

π(b2 − a2)ωμ(−j)

{[ubN1(ub) − uaN1(ua)]K1 − [ubJ1(ub) − uaJ1(ua)]K2}

Io[No(ub)K1 − Jo(ub)K2]

Zi(ave) =
2ρlJz(ub)

(u2
b − u2

a)

{[ubN1(ub) − uaN1(ua)]K1 − [ubJ1(ub) − uaJ1(ua)]K2}

Io[No(ub)K1 − Jo(ub)K2]
, Ω

since (b2 − a2)m2j3 = b2m2j3 − a2m2j3 = u2
b − u2

a.

Zi(r) = 2πρl/(m2j3)

[No(ub)K1−Jo(ub)K2]

×{[ubN1(ub) − uaN1(ua)]K1 − [ubJ1(ub) − uaJ1(ua)]K2}−1

Zi(r) =
ρl/[No(ub)K1−Jo(ub)K2]

2π

m2j3 {[ubN1(ub)−uaN1(ua)]K1−[ubJ1(ub)−uaJ1(ua)]K2}

Yi(r) =
2π

m2j3 {[ubN1(ub)−uaN1(ua)]K1−[ubJ1(ub)−uaJ1(ua)]K2}

ρl/[No(ub)K1−Jo(ub)K2]



(12.77)

(12.78)

(12.79)

(12.76)

(12.80)

(12.81)

(12.82)

(12.83)

(12.84)

Jzr = AJo(u) + BNo(u)

Jz(ur) = Jz(ub)
No(ur)K1 − Jo(ur)K2

No(ub)K1 − Jo(ub)K2

Bzr = Bzb
NrK1 − JrK2

NbK1 − JbK2

where K1 = J′a − J′b, K2 = N ′a − N ′b are constants.
Substituting (13.37) and (12.78) into (12.31) gives

Zϕ = ρmj3/2 K1N ′r − K2J′r
K1Nr − K2Jr

12.6 The average magnetic field and permeability

Previously for a solid conducting cylinder, the average permeability was defined by (see
section 8.3)

μ =
B

Ba
=

2

a2Ba

∫
a

0

rB(r)dr

where at the cylinder surface Ba = B(a) = μoHa.
For a conducting tube the average magnetic field is

B =
2

b2 − a2
∫

b

a

rB(r)dr

If the magnetic field in the tube walls Bi is uniform and constant then the average internal field
is as expected

B =
2

b2 − a2
Bi ∫

b

a

rdr =
2

b2 − a2
Bi

b2 − a2

2
= Bi

The average permeability of the tube is then

μ =
B

Bb
=

2

Bb(b2 − a2)
∫

b

a

rB(r)dr

where Bb is the applied field. Substitute for Br = B(r) (12.78)

μ =
2

(b2 − a2)
∫

b

a

r
NrK1 − JrK2

NbK1 − JbK2
dr

¯

¯

¯

¯
¯

¯
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(12.87)

(12.88)

(12.89)

(12.90)

(12.91)

12.7 Field transmission and screening factor

The Field Transmission (T) is defined by the ratio

T =
B(b)

B(a)

Also of interest is the screening factor

S=1 − T=1 −
B(b)

B(a)

12.8 Admittance analysis

The internal admittance of a solid cylindrical conductor of radius a is Ya. The internal
admittance of a solid cylindrical conductor radius of b is Yb. The internal admittance of a tube
thickness a − b is Yab = Ya − Yb.

Now for a solid cylindrical conductor, the radius a the internal impedance is

Za = Rdc
ua

2

Jo(ua)

J1(ua)

where ua = j3/221/2a/δ and δ=(2ρ/(ωμ))1/2 is the skin depth. Similarly for a solid cylindrical
conductor radius b the internal impedance is

Zb = Rdc

ub

2

Jo(ub)

J1(ub)

where Rdc is the steady state resistance of the conductor

Rdc =
ρl

πr2

where ρ is the resistivity of the conductor and l its length.
The admittance is the reciprocal of these impedances. Hence,

Yab=1/Zab =
2π

ρl
[ a2J1(ua)

uaJo(ua)
−

b2J1(ub)

ubJo(ub)
]

At high frequencies

J1(ur)

Jo(ur)
= −1/j



(12.92)

(12.93)

(12.94)

(12.95)

Hence,

Yab = −
2π

jρl
[ a2

ua
−

b2

ub
]

and, we can put

Yab = Kf/f 1/2

Zab=1/Yab = f 1/2/Kf

where

Kf =
a − b

l
√ 2π

jρμ



(13.1)

Chapter 13
Hollow cylindrical conductor – axial B

13.1 Introduction

A magnetic field applied to a solid cylindrical conductor was considered
previously, page 131. In this chapter, we consider a conducting tube such as
may be used in substation bus conductors [109](not a clippie!). The present
analysis and measurements are mainly limited to low-power conditions.

13.2 Magnetic field analysis

In this case, we consider a time-dependent magnetic field B = Boejωt

applied axially to a long cylindrical tube conductor with inner radius a, and
outer radius b ( Figure 13.1). Bo is less than the saturation flux density Bsat
and any static magnetic field is assumed zero, that is, Bdc=0. The field
penetration into the conductor is obtained from Maxwell's equations, which
yield the diffusion (5.3) re-written here as follows:

∇2
B = jm2

B



(13.2)

(13.3)

(13.4)

Figure 13.1 Magnetic field applied in the z-axial direction of a
metal tube

where m2 = ωμσ or m = √ 2/δ, skin depth δ = √(2/ωμσ). In the following,
the magnetic field is in the z-direction, so B = Baz, ρ = r, and we drop the
subscript z. In cylindrical co-ordinates (13.1), then becomes

∇2B = r−1 ∂

∂r
(r ∂B

∂r
) + r−2 ∂ 2B

∂ϕ2
+

∂ 2B

∂z2
= jm2B.

Assuming B does not vary with angle ϕ or distance z, then

r2 ∂ 2B

∂r2
+ r

∂B

∂r
− jm2Br2=0

which is Bessel's modified equation order 0. The general solution for the
magnetic field inside the tube walls is

B(r) = AJo(ur) + BNo(ur)



(13.13)

(13.5)

(13.6)

(13.7)

(13.8)

(13.9)

(13.10)

(13.11)

(13.12)

where a≤r≤b, Jo(u), and No(u) are Bessel's functions of the first kind and
second kind respectively with complex argument u and order zero. (See the
general Appendix.) For the outer surface of the cylinder r = b, the solution
is

B(b) = AJo(ub) + BNo(ub)

For the inner surface of the cylinder r = a, the solution is

B(a) = AJo(ua) + BNo(ua)

where both B(a) and B(b) are constants for a given frequency. Solving
(13.5) and (13.6) for A and B

A = [B(b)No(ua) − B(a)No(ub)]/D

B = [B(a)Jo(ub) − B(b)Jo(ua)]/D

D = Jo(ub)No(ua) − Jo(ua)No(ub)

Although we know B(b) because this is the applied field. B(a) is
unknown but can be obtained by differentiating B(b) and B(a) wrt ub and ua
as indicated by the prime (′).

B′(b)=0=AJ ′
o(ub) + BN ′

o(ub)

B′(a)=0=AJ ′
o(ua) + BN ′

o(ua)

both B'(a) and B'(b) are zero because these fields are constants at the
surfaces a and b. Hence,

AJ ′
o(ub) + BN ′

o(ub) = AJ ′
o(ua) + BN ′

o(ua)

A

B
=

N ′
o(ua) − N ′

o(ub)

J ′
o(ub) − J ′

o(ua)

For the general solution (13.4) and (13.5) substitute for A and B from (13.7)
and (13.8), and abbreviating



(13.14)

(13.15)

(13.19)

(13.20)

(13.21)

(13.22)

(13.23)

(13.16)

(13.17)

(13.18)

Bzr =
BzbNa − BzaNb

D
Jr +

BzaJb − BzbJa

D
Nr

Bzb =
BzbNa − BzaNb

D
Jb +

BzaJb − BzbJa

D
Nb

where

D = JbNa − JaNb

From (13.14) and (13.15), put

c1 = a1x + b1y

c2 = a2x + b2y

where

Solving (13.17) and (13.18) for x and y

x =
c1b2 − c2b1

a1b2 − a2b1

y =
a1c2 − a2c1

a1b2 − a2b1

Substituting for the parameters from (13.19) gives

A =
BzbNr − BzrNb

JbNr − JrNb

B =
BzrJb − BzbJr

JbNr − JrNb

Jo(ur) = Jr, Jo(ua) = Ja, Jo(ub) = Jb

No(ur) = Nr, No(ua) = Na, No(ub) = Nb

B(b) = Bzb, B(a) = Ba, B(r) = Bzr

c1 = Bzb, a1 = Jb,x = A, b1 = Nb, y = B,

c2 = Bzr, a2 = Jr,x = A, b2 = Nr, y = B



(13.24)

(13.25)

(13.26)

(13.27)

(13.29)

(13.28)

Hence,

A

B
=

BzbNr − BzrNb

BzrJb − BzbJr
=

N ′a − N ′b
J′b − J′a

Solving for Bzr gives

Bzr = Bzb

NrK1 − JrK2

NbK1 − JbK2

Obtaining the surface magnetic field at a from (12.27), where Nr
becomes Na and Jr becomes Ja gives

Bza = Bzb

NaK1 − JaK2

NbK1 − JbK2

where K1 = J ′
a − J ′

b, K2 = N ′
a − N ′

b  are constants for fixed frequency.

13.3 Current density

For a cylindrical conductor in an axial magnetic field the current density is
(see Section 8.3.4)

Jϕ =
1

μo

∂B(r)

∂r

For a conducting tube

B(u) = AJo(u) + BNo(u)

where

u = mrj3/2,m = √ωσμ,
du

dr
= mj3/2



(13.30)

(13.31)

(13.32)

(13.33)

(13.34)

(13.35)

(13.36)

(13.37)

Jϕ =
1

μo

∂B(r)

∂r
=

1

μo

∂B(u)

∂u

du

dr

Jϕ =
mj3/2

μo

∂B(u)

∂u

From (13.25), we can put

∂B(u)

∂u
= Bb

∂

∂u
[NrK1 − JrK2

NbK1 − JbK2
] = Bb

∂F(u)

∂u

where

F(u) = [NrK1 − JrK2

NbK1 − JbK2
]

Now for a given frequency, J ′
a, J ′

b,N
′
a,N ′

b, are all constants (see
abbreviations page 167). Hence, we can put

∂F(u)

∂u
=

∂

∂u

K1Nr − K2Jr

NbK1 − JbK2

Hence (13.32) becomes

∂B(u)

∂u
= Bb

∂

∂u

K1Nr − K2Jr

NbK1 − JbK2

where K1 = J ′
a − J ′

b,K2 = N ′
a − N ′

b  are constants.
Equation (13.31) becomes

Jϕ =
Bbmj3/2

μo

∂

∂u
[K1Nr − K2Jr

NbK1 − JbK2
]

or

Jϕ =
Bbmj3/2

μo
[K1N ′r − K2J′r

NbK1 − JbK2
]



(13.38)

(13.40)

(13.41)

(13.42)

(13.44)

(13.43)

(13.39)

where the primes (′) refer to the derivative wrt u.

Jϕ =
Bbmj3/2

μo(NbK1 − JbK2)

∂(K1Nr − K2Jr)

∂u

B′(u) = AJ ′
o(u) + BN ′

o(u)

Using the identity

dJo(u)

du
= −J1(u)

and noting that −j3/2 = j1/2

Jϕ =
mj1/2

μo

[AJ1(u) + BN1(u)]

13.3.1 Impedance
The wave impedance is defined by

Zϕ =
Eϕ

Hz

where Eϕ is given by

Eϕ = ρJϕ

ρ is the resistivity of the metal tube. Jϕ is given by (13.37) and Hz by
(13.25).

Br = BbF(u) = Bb

K1Nr − K2Jr

NbK1 − JbK2

Jo(ur) = Jr, Jo(ua) = Ja, Jo(ub) = Jb,

No(ur) = Nr,No(ua) = Na,No(ub) = Nb,

B(b) = Bb,B(a) = Ba,B(r) = Br



(13.45)

(13.46)

(13.47)

(13.48)

(13.49)

where K1 = J ′
a − J ′

b,K2 = N ′
a − N ′

b  are constants.
Substituting (13.37) and (13.44) into (13.42) gives

Zϕ = ρmj3/2 K1N
′
r − K2J

′
r

K1Nr − K2Jr

13.4 The average magnetic field and permeability

Previously for a solid conducting cylinder, the average permeability was
defined by (see Section 8.3)

μ =
B

Ba
=

2

a2Ba

∫
a

0
rB(r)dr

where at the cylinder surface Ba = B(a) = μoHa.
For a conducting tube, the average magnetic field is

B =
2

b2 − a2
∫

b

a

rB(r)dr

To prove this, if the magnetic field in the tube walls Bi is uniform and
constant, then the average internal field is

B =
2

b2 − a2
Bi ∫

b

a

rdr =
2

b2 − a2
Bi

b2 − a2

2
= Bi

as expected. The average permeability of the tube is then

μ =
B

Bb
=

2

Bb(b2 − a2)
∫

b

a

rB(r)dr

where Bb is the applied field. Substitute for Br = B(r) from (13.44)



(13.50)

(13.51)

(13.52)

(13.53)

μ =
2

(b2 − a2)
∫

b

a

r
NrK1 − JrK2

NbK1 − JbK2
dr

13.5 Azimuthal impedance

Similar analysis applied to a conducting tube, outside radius a and inside
radius b, gives for the azimuthal impedance

Z = V /I =
2πρ

b

[uaJ1(ua) − ubJ1(ub)]

[Jo(ua) − Jo(ub)]

For b=0 this reduces to (9.1), the case of a solid cylinder.

13.6 Power dissipation

The time averaged power dissipation is (see page 59, (3.102)),

< P >=
I 2
o

2
Re(Z) =

V 2
o

2
Re(1/Z),W

For the power dissipation in a hollow tube, substituting for the
impedance (51) gives

< P >= H 2
a bπρ

Jo(ua) − Jo(ub)

Jo(ua)

2

Re [
ubJ1(ub) − uaJ1(ua)

Jo(ua) − Jo(ub)
],W

where Ha is the applied field in A/m.∣ ∣



Chapter 14
Magnetic field penetration into a copper tube:

experimental measurements

14.1 Introduction

This section presents experimental measurements of magnetic field penetration through
the walls of a conducting cylinder. The field was produced by a solenoidal wire coil
wound on a plastic tube, which could be slid over a copper tube, Figure 14.1. These
experiments were carried out with the object of comparing experimental measurements
with theoretical calculations for the case of a sinusoidal magnetic field applied parallel to
the axis of a conducting tube. The field was produced by a solenoidal wire coil driven
from a Function Generator HP3325A, a power amplifier Sherwood AX4050R, and an 11
Ω, 50 W series resistor (two parallel 22 Ω ±5%, 25 W resistors) as shown in Figures 14.2,
14. 3, and 14.4.



(14.1)

(14.2)

Figure 14.1 The Hall sensor was used to measure the solenoid magnetic fields
either outside (Bb) or inside (Ba) the copper or plastic tubes

Figure 14.2 Circuit for measuring the field penetration in a metal tube T. G-
function generator HP3325A, Amp-Power amplifier Sherwood
AX4050R, A-Solartron DMM 7150+, Rs=11 Ω, 50 W, L = solenoidal
field coil, VH – Hall sensor and Solartron DMM 7150.

14.2 Magnetic field coil details

The flux density at the centre of a solenoid of finite length is [111] p233 Kraus

B =
μoNI

√4R2
c + L2

c

where I is the current in amps, μ = μoμr, where μr = relative permeability of the tube = 1
in this case, N = number of turns, Rc is the coil radius, Lc = coil length. The coil
inductance is

L = NBA/I

In the experiments, the coil (designated C2) consisted of a 0.3 mm diameter copper wire
wound on a grey plastic tube Tp and fixed with PTFE tape. This could be slid over a
copper tube T4 to produce the required axial field. The number of turns N=153, length
Lc=60 mm, diameter Dc=34.6 mm. The copper tube, designated here T4, had length
lT=250 mm, diameter dT=28 mm, and wall thickness tw=1 mm.

The inductance and resistance of the coil wound only on the plastic tube was
measured with an Inductance capacitance resistance (LCR) meter Racal-Dana Databridge
9343M. The results are given in Table 14.1.

Table 14.1 L and R of coil on plastic tube Tp using LCR meter Racal-Dana
Databridge 9343M.



(14.3)

(14.4)

f
(Hz)

L
(μH)

R
(Ω)

Reverse L
(μH)

Reverse R
(Ω)

Ave L
(μH) Ave R (Ω)f

(Hz)
L
(μH)

R
(Ω)

Reverse L
(μH)

Reverse R
(Ω)

Ave L
(μH) Ave R (Ω)

100 400 4.161 401 4.165 400 4.162
1k 396 4.188 396 4.190 396 4.189
10k 388 4.466 388 4.457 388 4.462

Substituting for (14.1), coil turns and dimensions gives for I=1A B=2.776 mT,
L=399.3 μH. This dc inductance agrees well with the low frequency measured values
given in Table 14.1. The coil was also measured with a bridge WK B424 at 1 kHz. This
gave L=393 μH, R=4.16 Ohms which also agrees approximately with the databridge
measurement at 1 kHz.

14.2.1 Coil temperature
During extended periods of measurement, the temperature of the coil increased from room
temperature, 20–40∘C. The temperature was measured about halfway along the coil with a
thermocouple trapped between the coil's plastic former and the copper tube.

14.2.2 DC Test of Coil 2 and Hall sensor
The magnetic field was measured using a Hall-effect IC sensor, UGN-3503U, and a
digital multimeter (DMM) Solartron 7150 plus. Results were obtained using a double
differential arrangement with two back-to-back sensors. The coil 2 was connected directly
to a Farnell Power Supply XA35-2T with integral current and voltage meters. The coil
was empty except for the Hall sensor placed midway inside the coil. The results are
shown in Table 14.2 [112].

Table 14.2 DC Current through Coil 2 and measured Hall voltage using
differential Hall probe

I(A) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
VH
(mV)

46.2 55.3 64.6 73.7 82.9 92.2 101.2 110.3 119.4 128.1 137.6

To obtain the magnetic field B2 (14.1) was used. This gives

B2=2.776I mT .

The Hall voltage curve fit equation from Table 14.2 and Figure 14.5 is

VH=91.31I + 46.3 mV .



(14.5)

Figure 14.5 DC Hall sensor voltage VH and calculated magnetic field B2 as a
function of coil 2 current. Using MSR Hall probe and 6 V power
supply, B2 from (14.3). All currents and voltages are dc.

Substituting for I from (14.3) gives

VH=32.96B2 + 46.3 mV B2=0.0304VH − 1.4076 mT

For example, if I=0.6 A, VH = 100 mV, then B2 = 1.63 mT agreeing with Figure 14.5.
This gives the sensitivity of the Hall measurement to be 32.96 mV/mT and the magnetic
field sensitivity as 0.0304 mT/mV.

For a single Hall device used, UGN-3503U, the data sheet gave the sensor sensitivity
dV as minimum = 0.75, typical = 13, and maximum = 17.2 mV/mT. We used two sensors
in a differential connection, which yielded 2dV=32.96 mV/mT, which is close to the
manufacture's max data of 34.4 mV/mT. Note that in Figure 14.5 there is a relatively large
Hall offset voltage VH(0)=46.36 mV for zero current. This is absent in AC measurements.

14.2.3 AC test of coil 2 and Hall sensor: no copper tube
In this case, coil 2 was driven from a sinusoidal source, as shown in Figure 14.2. This
consisted of a function generator FG (HP3325A) connected to the ‘Right’ phono input of



a stereo power amplifier PA (Sherwood AX4050). The ‘Right’ output of this was
connected to a series resistance of 11 Ohms, 50W. This consisted of two 22 Ohms 5%,
25W power resistors connected in parallel and mounted on a heat sink, as shown in figure
14.3.

Figure 14.3 Experimental arrangement for the measurement of coil two
magnetic field. Shows the Sherwood Stereo amplifier, power supply,
series resistor and copper tube, and plastic tube supporting the
solenoid. The Hall sensor is shown on the bottom rhs. This could be
slid into either the copper or plastic tubes.

Coil 2 was connected to one side of the power resistor and the PA ground. The coil
current and Hall voltages were measured with Solartron DMMs, Sol +, and Sol,
respectively. The magnetic field was measured midway in coil 2 with no copper tube,
using a purpose-made differential Hall sensor with 6 V P/S and an inductor sensor
adjacent to the Hall sensor, Figure 14.4.

Figure 14.4 Photograph showing dual differential Hall sensor and axial
inductor sensor mounted on PCB strip. The PTFE covered plastic
discs allowed the probe to be positioned into the centre of the coil or
the copper tube.



14.2.4 Inductor magnetic field sensor
This is a commercial axial lead inductor, Painton 69.47, 1 mH length 8.5 mm, and 3.22
mm diameter. This includes magnetic material, presumably ferrite. The low-frequency L
and R were measured using the databridge LCR meter and the results listed in Table 14.3.

Table 14.3 Axial lead inductor, Painton 69.47, 1 mH. L and R measurements
using databridge LCR meter

f (Hz) L(μH) RΩ Revers L (μH) Revers RΩ Ave L (uH) Ave RΩ
100 1050 55.71 1040 55.73 1045 55.72
1k 1037 55.74 1036 55.74 1036 55.74
10k 1033 55.86 1032 56.0 1032 55.93

The results obtained are shown in Figure 14.6. These were obtained with an FG output
of 2 mV, frequency f=1 kHz supplying the right phono input of the PA. The output current
of the PA was adjusted with the PA volume control, and the current was monitoring with
the DMM.



(14.6)

(14.7)

Figure 14.6 AC measurements of the magnetic field in the centre of coil 2 using
a differential Hall sensor and Inductor sensor

The Hall voltage curve fit, equation from Figure 14.6, is

VH=92.7I + 0.0163 mV,

where I is in Amps and VH in mV and both are rms values. Assuming that at this
frequency the field is still given by (14.3) (since the inductance measured at 1 kHz is
close to the calculated value using B2), then

VH=33.39B2 + 0.0163 mV B2=0.03VH mT

This gives the sensitivity of VH to B as 33.39 mV/mT and B to VH as 0.03 mT/mV.
Figure 14.7 shows the good agreement obtained for B2 determined from VH
measurements and B2 calculated from the current in the coil.

Figure 14.7 Comparison of ac magnetic field measured at 1 kHz using the Hall
sensor and magnetic field calculated from the current in the coil.



Also shown is the inductor sensor voltage VL.

14.2.5 Axial sinusoidal B field applied to copper tube T4
These measurements used the same experimental arrangement as that described
previously. In the present experiment, coil 2 was placed over the copper tube T4, and the
frequency was varied for constant coil current.

The results obtained are shown in Figures 14.8 and 14.9. These were obtained with an
FG output of 2 mV supplying the right phono input of the PA. The output current of the
PA was kept constant to within less than 1% at each frequency by manually adjusting the
PA volume control and monitoring the current in the DMM.

Figure 14.8 Hall voltage as a function of frequency with the Hall sensor
positioned mid-way in Coil 2, with and without the copper tube T4.
The current was maintained constant at 1 A within less than 1% for
each frequency. Also shows the transmission coefficient T.



(14.8)

(14.9)

Figure 14.9 Hall voltage VH and inductor sensor voltage VLs with copper tube
present (in) and copper tube absent (out)

14.3 Field transmission and screening factor

The field transmission coefficient (T) is defined by the ratio field inside tube over Field
outside tube. Thus,

T =
B(a)

B(b)

where B(a) is the field at the tube inner surface r = a and B(b) is the field at the tube outer
surface r = b.

Also of interest is the screening factor

S=1 − T=1 −
B(a)

B(b)

The fraction of the field penetration between the inner surface of the tube and a point
radius r in the tube is Tr = Br/Bb.



(14.10)

(14.11)

The transmission coefficient T and screening factor S for Cu tube T4 are shown in
Figure 14.10. These were obtained from Figure 14.8 and (13.26), p. 185.

Figure 14.10 Transmission coefficient T and screening factor S for Cu tube T4.
From Figure 14.8 and the theoretical T from (13.26), p. 185

14.4 Field errors

The experimental result for the transmission coefficient T differs from the theoretical
result as shown in Figure 14.10. In these measurements the tube length was much larger
than the solenoid length. Hence, the field at the end of the solenoid had a vertical
component. The relationship between the horizontal susceptibility (h) component and
vertical susceptibility component (v) is [12]

χh =
1

2
χv

μh − 1=
1

2
(μv − 1)

The mean permeability is (13.46)



(14.12)

(14.13)

μav =
Bav

Bb

Hence,

Bv

Bb

=2
Bh

Bb

− 1

The Hall device was positioned in the centre of the coil close to the surface, so it
detected the field parallel to the surface. This field was constant and uniform across the
diameter of the coil. The vertical field at the solenoid end was also probed using the Hall
sensor and found to be only a few percent of the parallel field inside the solenoid. The
theoretical result depends on Bessel functions and their derivative (see (13.26), p. 185,
and the MATLAB® program below). Also, the tube radii a and b are close to each other,
so any small differences may cause large errors in the theoretical results.

14.5 MATLAB® program for transmission coefficient, T

Note: The! symbol substitutes for the percentage symbol used for comments in
MATLAB®.

!Btube.txt Matlab analysis of tube flux penetration. format short e !for x =
linspace(.0001,.004,50) for x = logspace(1,4,100) f=x; w=2*pi*f; muo=pi*4e-7; mur=1;
mu=muo*mur; rho=1.7e-8; !ohm m. b=14e-3; !tube od radius, m. a=13e-3; !tube id
radius, m.

Joa=besselj(0,ua); Job=besselj(0,ub);

J1a=besselj(1,ua); J1b=besselj(1,ub);

Noa=bessely(0,ua); Nob=bessely(0,ub);

N1a=bessely(1,ua); N1b=bessely(1,ub);

dJ1=J1b-J1a; dN1=N1b-N1a;

BaN=(Noa*dJ1+Joa*dN1/(Nob*dJ1+Job*dN1); !Ba inside hollow tube BaN=Ba/Bb
BN=Joa/Job; !Solid tube BN= Ba/Bb !See equation 13.26, p185. muave=(2/ub)*J1b/Job;
!ave perm mu=Bave/Bb

disp([x abs(BaN) abs(BN)]) !disp([x real(B1N) imag(B1N) real(BN) imag(BN)])
!disp([x abs(muave)])



end



Chapter 15
Impedance measurement techniques

15.1 Introduction

In skin effect measurements, the impedance may be very low particularly at frequencies
in the audio and power range, where the ac resistance can be less than a milliohm, and
accurate measurements become difficult to achieve [119]. Hence, in order to validate the
skin effect theory based on impedance measurements, sensitive instruments are required.

Some of the earliest impedance measuring techniques used the principle of the
balanced bridge as used for resistance measurements. This also included the transformer
ratio arm bridges as used by Wayne Kerr in the ‘Universal Bridge’ B224 (200 Hz to 50
kHz) and the RF Bridge B601 (15 kHz to 5 MHz) [116]. The bridge techniques require
laborious balancing but can be very accurate and are commonly used in the laboratory for
precision measurements.

For direct variable frequency measurements of L, C, and R, techniques are required
that measure the vector current through the device and vector voltage across it, Z = V/I.
This is referred to as the I, V method of measuring the complex impedance of a device
from which L, C, and R may be determined. For high-frequency measurements above
about 1 MHz, the reflection and /or transmission coefficient parameter values may be
measured and related to the impedance of the device under test as in the HP 4191A and
Agilent 4395A Network Analysers. Further details about these techniques may be
obtained from the Impedance Measurement Handbook [117,118].

15.2 Recent developments

During the past few years, there has been an increase in the development of novel
impedance measuring techniques. This has been largely stimulated by clinical
applications in the fields of bio-impedance and impedance tomography. This includes a
high speed bio-impedance spectrometer based on a Field Programmable Gate Array
(FPGA) [121], fast impedance measurements using curve fitting algorithms [122],



impedance measurements using a digital signal processor (DSP) [123], detection of
magnetic fields attenuated by the skin effect using a DSP [124], a high speed impedance
measuring system based on information filtering demodulation [125], Complex
impedance measuring system based on the I − − V method [126], genetic algorithm
method [127], impedance spectroscopy using broadband excitation [128,129], impedance
measurements using a gain phase meter (GPM), [104] and impedance measurements
using the three voltmeter method (3VM),[130,131]. Although at present the GPM
technique relies on bench instruments, further developments are possible using the single
chip RF/IF Gain and Phase detector system AD8302 [133], which should permit low-cost
measurements of impedance in the field for frequencies up to 2.5 GHz. The introduction
of a high-precision impedance converter chip, which includes a programmable tunable
frequency generator with a 12- bit, 1 MSPS (AD5933) or 250 kSPS (AD5934) analog-to-
digital converter is also leading to impedance measurement field applications [132].

15.3 GPM technique

In addition to the other techniques described above, a GPM technique was also employed
here to measure impedance as a function of frequency. This was particularly useful for
the low-frequency skin effect, where the resistance may be less than a milliohm. Novel
software routines were produced to extract the complex components of the impedance
from the signal amplitude and phase. The technique is fully described in Raven [120].
The paper initially presents an analysis of the technique, followed by details of the de-
embedding procedure. A separate alternative circuit and analysis are described for the
measurement of capacitive impedance. The results of the experimental measurements are
divided into two parts: firstly, measurements over a continuous frequency range 100 Hz
to about 10 MHz using reference samples, which demonstrate the accuracy of the
technique. The reference samples included R, L, and C components and reverse-biased p–
n junctions. The latter was obtained at 1 MHz with an amplitude of 15.5 mV rms,
sufficiently low to only slightly modulate the depletion region. Finally, results were
presented that show that the technique is sufficiently sensitive to measure the skin effect
in a short copper rod at audio frequencies to about 10 MHz. These results are found to
compare well with theoretical analysis using Bessel functions, including the possible
detection of the internal inductance of the rod, which is significantly less than the
external inductance.

15.3.1 Measurement system and procedures
The test system used a HP3575A GPM, Fig.15.1. This includes two independent input
channels A and B with sensitivity of 0.2 mV to 20 V rms in two ranges, frequency
response of 1 Hz to 13 MHz in four overlapping ranges. The input impedance of each
channel is 1 Megohm in parallel with less than 30 pF. The results reported here were
obtained with the instrument set to 0.2 mV to 2 V on both channels, frequency range 1



kHz to 13 MHz, Amplitude Function B/A and Phase reference A. In the B/A mode the
instrument measures the relative amplitude Log(B/A) of the two input signals over a
display range −100.0 dB to +100 dB and resolution 0.1 dB. The phase measurement
range was −180∘ to +180∘ with 0.1∘ resolution. The GPM was set such that the analog
output 1 corresponded to B/A with dc voltage 10mV/dB. Analog output 2 corresponded
to the phase difference between A and B with dc voltage 10 mV/°.

Figure 15.1 Measurement system. PC-computer with IEEE interface, FG,
function generator; PA, power amplifier; GPM, gain phase meter. G
and ϕ are DMM's measuring dc outputs from GPM proportional to
VB/VA and phase, respectively.

The signal source was obtained from a function generator (FG) HP3325A
controlled by a computer (PC) via an IEEE GPIB interface as shown in Figure
15.1. The output of FG was applied to a purpose built power amplifier (PA).

15.3.2 Equivalent circuit
The general equivalent circuit for the impedance analysis is shown in Figure 15.2. Vo, Zo
are the voltage and impedance of the signal generator source. ZA and ZB are the input
impedances of the GPM input channels. Zs is a reference impedance and Zx the unknown
device impedance. In this figure GPM represents either a specific instrument or a
dedicated IC such as the monolithic dual logarithmic amplifier AD8302.



(15.1)

(15.2)

(15.3)

Figure 15.2 Equivalent impedance analysis circuit

The voltage at node A is

VA

Vo
=

ZA//(Zs + ZB//Zx)

Zo + ZA//(Zs + ZB//Zx)

The voltages at nodes B and A determine the transfer coefficient G = VB/VA
measured by the gain phase meter (Figure 15.3). This is given by

G =
VB

VA

=
ZB//Zx

Zs + ZB//Zx

G =
ZBZx

ZsZB + ZsZx + ZBZx



(15.4)

(15.5)

(15.7)

(15.10)

(15.11)

(15.6)

(15.8)

(15.9)

Figure 15.3 Frequency response of transfer functions. In this example the value
of the components was: Rs = 3Ω, Rx = 1Ω, Ls = 10mH, Lx = 1mH.

This equation may be simplified if we make Zs ≪ ZB. Then,

G =
Zx

Zs + Zx

Expanding the complex impedances leads to

G =
RxR1 + XxX1 + j(XxR1 − X1Rx)

R2
1 + X 2

1

where

R1 = Rx + Rs, X1 = Xx + Xs

The GPM measures the amplitude ∣G∣ = VA/VB and phase angle ϕ between VB and
VA. Thus the real Gr and imaginary terms Gi, amplitude ∣G∣ and phase angle ϕ are

Gr =
RxR1 + XxX1

R2
1 + X 2

1

, Gi =
XxR1 − RxX1

R2
1 + X 2

1

, ∣ G ∣= √G2
r + G2

1, ϕ = tan−1 Gi

Gr

If we assume that the reactive terms Xx and Xs are the only frequency dependent
components, that is, Rx and Rs are frequency independent then the frequency response of
the amplitude and phase depend on functions of the form

∣ G ∣= F1[Xx(f), Xs(f)], ϕ = F2[Xx(f), Xs(f)]

For the skin effect case Rx also depends on frequency. Hence,

∣ G ∣= F1[Rx(f), Xx(f), Xs(f)], ϕ = F2[Rx(f), Xx(f), Xs(f)]

The impedance of the unknown is then given by rewriting (15.3) as follows:

Zx =
ZsG

1 − G(ZB+Zs)
ZB

If we make Zs ≪ ZB or Zx ≪ ZB then

Zx =
ZsG

1 − G



(15.12)

In the MATLAB programme used to determine the impedance of the DUT the full
(15.10) was used.

15.3.3 De-embedding
De-embedding was carried out as follows. With reference to Figure 15.2, the device to be
measured is connected between terminals B and E, and the transfer function G and ϕ are
measured. The device is replaced by a short circuit, and the measurements are repeated.
With no device connected, the open-circuit impedance is Zoc = ZB, where ZB is the input
impedance of channel B of the GPM. The final unknown impedance is then given by

Zx =
ZsG

1 − G/Goc

−
ZsGsc

1 − Gsc

Thus, the unknown impedance Zx is given in terms of the measured transfer function
for the unknown device G, short circuit Gsc, open circuit Goc, and the series impedance
Zs.

Results obtained using this GPM method are shown in Figures 15.4(a) and 15.4(b).
The GPM accuracy using series impedance: Rs=3.3Ω, Ls=48 nH was better than 2% for
the resistance measurements in a range 0.2–10 Ohms, frequency range 200 Hz to 1 MHz.
For the inductance measurements, the accuracy was better than 10% over a range 1 μH to
20 μH, frequency range 1 kHz to about 0.5 MHz. Full details are given in Raven [120].
This includes skin effect measurements and using the technique to measure capacitors
and diodes.



Figure 15.4 (a)Measured values of reference resistors using the GPM method
and (b) measured values of reference inductors using the GPM
method
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Appendix

A.1 Bessel's modified equation

For problems such as ac magnetic fields or current flow applied parallel to the z-axis of a
conductor, we obtain partial differential equations of the form [76]

r2 ∂ 2Y

∂r2
+ r

∂Y

∂r
− jm2Y r2=0

where Y = f(r), r the radius of the cylinder and m is a constant. Now Bessel's equation with
argument u and order v may be written as follows [78]:

u2 ∂ 2Y
∂u2 + u ∂Y

∂u + (u2 − v2)Y=0

The general solution of this equation is

Y (r) = AJv(u) + BNv(u)

where A and B are constants to be determined by the boundary conditions, Jv(u) and Nv(u) are
Bessel functions of the first and second kind, respectively, with argument u and order v. If in
(A.2), we substitute u = rmj√j with v=0, then (A.1) is obtained showing that equation (A.2) is
a modified, zero order (v = 0) Bessel function. Jv(u) is obtained from a series solution of the
Bessel equation

Jv(u) = (u/2)v[
1

v!
−

(u/2)2

1!(v + 1)!
+

(u/2)4

2!(v + 2)!
−

(u/2)6

3!(v + 3)!
+ ⋯

=
1

π
∫

π

0
cos(nθ − u sin θ) dθ

Nv(u) =
Jv(u) cos vπ − J−v(u)

sin nπ

Nv(u) is the Neumann function or Bessel function of the second kind. For non-integral v, this
function satisfies Bessel's equation. However, if v is an integer, then the Neumann function is
indeterminate and leads to non-physical solutions. It turns out that Neumann functions are not
applicable for problems that involve the origin, such as axial ac currents or axial magnetic



(A.8)

(A.9)

(A.11)

(A.10)

(A.7)

fields. Hence, for these problems we only require Bessel functions of the first kind, Jv. The
solution to (A.1) is therefore

Y (r) = AJo(u)

The Bessel functions of the first kind, order zero and order one respectively are given by

Jo(u)=1 −
(u/2)2

(1!)2
+

(u/2)4

(2!)2
−

(u/2)6

(3!)2
+ ⋯ =

∞

∑
m=0

(−1)m
(u/2)2m

(k!)2

J1(u) =
u

2
−

(u/2)3

1!2!
+

(u/2)5

2!3!
−

(u/2)7

3!4!
+ ⋯ =

∞

∑
m=0

(−1)m
(u/2)2m+1

m!(m + 1)!

These two orders are shown plotted in Figure A.1.

Figure A.1 Plot of zero order and first order Bessel functions, Jo(x), J1(x),
respectively, using MATLAB

A.1.1 Kelvin functions
Equation (A.8) can be re-expressed in terms of Real and Imaginary complex components,
referred to as Kelvin functions. The zero order Bessel function is then

Jo(u) = RJo(u) + jIJo(u)

Substituting for u = rmj√j in (8.5) gives

Jo(u)=1 + j(mr/2)2 −
(mr/2)4

(2!)2
− j

(mr/2)6

(3!)2
+ ⋯



(A.12)

(A.13)

(A.15)

(A.14)

Separating out the real and imaginary complex components gives the Kelvin functions

RJo(u) = bero(mr)=1 −
(mr/2)4

(2!)2
+

(mr/2)8

(4!)2
−

(mr/2)12

(6!)2
+ ⋯

IJo(u) = beio(mr) = (mr/2)2 −
(mr/2)6

(3!)2
+

(mr/2)10

(5!)2
⋯

The Kelvin functions are shown plotted in Figure A.2.

Figure A.2 Plots of Kelvin functions and real and imaginary Bessel functions from
MATLAB

Bessel functions of the first and second kinds with complex argument, that is, hyperbolic
Bessel functions, are frequently expressed in terms of Kelvin functions In and Kn, respectively
[6,76,79]. In this work we use the series solutions form for calculations involving MATLAB®
and the Kelvin form for comparison with electrical equivalent circuits.

A.2 Properties of Bessel functions

The following formulae provide some useful relationships between Bessel functions which are
found in many textbooks [73,78].

J−m(u) = (−1)mJm(u), m = integer

dJo(u)

du
= −J1(u)



(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

d(uJ1(u))

du
= uJo(u)

dJn(u)

du
=

n

u
Jn(u) − Jn+1(u)

∫ uJo(u)du = uJ1(u)

∫ J1(u)du = −Jo(u)

∫
ua

0
J1(u)du=1 − Jo(ua)

∫ uJ 2
o (u)du =

u2

2
[J 2

o (u) + J 2
1 (u)]

In these cases Zn(u) = Jn(u) or Nn(u), the Bessel function of the 2nd kind (Neumann
function).

dZn(u)

du
=

n

u
Zn(u) − Zn+1(u)

∫ Z1(u)du = −Zo(u)

∫ uZo(u)du = uZ1(u)

∫ u2Z 2
o (u)du =

u2

2
[Z 2

o (u) + Z 2
o (u)]

∫ uZ 2
n(u)du =

u2

2
[Z 2

n(u) − Zn−1(u)Zn+1(u)]

A.3 Power integral

The integral in the power dissipation (6.3) and (6.7) requires solutions of the normal current
density J(r) and its complex conjugate J⁎(r).

For the good conductor, the complex conjugate current density is J⁎(r, t) = Joe−jωt. The field
distribution is obtained from Maxwell's equations, which yields the diffusion equation ∇2J⁎ = −
jm2J⁎ where m2 = ωμσ. μ and σ are assumed constants. This may be expressed in cylindrical co-
ordinates, assuming again that J⁎ does not vary with θ or z:



(A.27)

(A.28)

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)

(A.34)

(A.35)

(A.36)

r2 ∂ 2J ⁎

∂r2
+ r

∂J ⁎

∂r
+ jm2J ⁎r2=0

Comparing this with Bessel's equation order zero

u2
2

∂ 2J ⁎

∂u2
2

+ u2
2

∂J ⁎

∂u2
2

+ u2
2J

⁎=0

where

u2
2 = r2m2j, u2 = rmj1/2

Previously, for the normal current density J we obtained u = rmj3/2 = u1 say.
The solutions of Bessel's equation are expected to be orthogonal [6], provided appropriate

boundary conditions are satisfied. In the case considered here, r = a, the radius of the cylinder is
one boundary, and r=0 is the other. Bessel's equation then becomes

r
d2Jo(u1)

dr2
+

dJo(u1)

dr
+ (

u2
1

r
)Jo(u1)=0

r
d2Jo(u2)

dr2
+

dJo(u2)

dr
+ (

u2
2

r
)Jo(u2)=0

where

u1 = mrj3/2, u2 = mrj1/2

Note that here the general solution is J(r) = CJo(u). Hence, J(r) can be replaced with Jo(u)
because C is a constant. By using the differential product rule, the above two differential
equations can be written as follows:

d

dr
[r dJo(u1)

dr
] + (

u2
1

r
)Jo(u1)=0

d

dr
[r dJo(u2)

dr
] + (

u2
2

r
)Jo(u2)=0

Multiply (A.31) by Jo(u2) and (A.33) by Jo(u1) gives

Jo(u2)
d

dr
[r dJo(u1)

dr
] + (

u2
1

r
)Jo(u1)Jo(u2)=0

Jo(u1)
d

dr
[r dJo(u2)

dr
] + (

u2
2

r
)Jo(u2)Jo(u1)=0



(A.37)

(A.38)

(A.39)

(A.40)

(A.41)

(A.42)

(A.43)

(A.44)

Subtract, noting that u
2
2−u2

1

r
=2jm2

Jo(u2)
d

dr
[r

dJo(u1)

dr
] − Jo(u1)

d

dr
[r

dJo(u2)

dr
]=2jm2rJo(u1)Jo(u2)=0

Integrating from r=0 to r = a,

∫
a

o

Jo(u2)
d

dr
[r

dJo(u1)

dr
] dr − ∫

a

o

Jo(u1)
d

dr
[r

dJo(u2)

dr
] dr=2jm2 ∫

a

o

rJo(u1)Jo(u2) dr

Integrating by parts (∫uv'dx = uv − ∫u'vdx) gives for the left hand side

∫ Jo(u2)
d

dr
[r dJo(u1)

dr
] dr = Jo(u2) [r dJo(u1)

dr
] − ∫ Jo(u2)

dr
[r dJo(u1)

dr
] dr

∫ Jo(u1)
d

dr
[r dJo(u2)

dr
] dr = Jo(u1) [r dJo(u2)

dr
] − ∫ Jo(u1)

dr
[r dJo(u2)

dr
] dr

Subtracting, the right hand sides cancel. Hence, inserting limits gives the power integral

2jm2 ∫
a

o

rJo(u1)Jo(u2) dr = [rJo(u2)
dJo(u1)

dr
]
a

o

− [rJo(u1)
dJo(u2)

dr
]
a

o

Now

dJo(u1)

dr
=

dJo(u1)

du1

du1

dr
= mj3/2Jo′(u1) = −mj3/2J1(u1)

dJo(u2)

dr
=

dJo(u2)

du2

du2

dr
= mj1/2Jo′(u2) = −mj1/2J1(u2)

2jm2 ∫
a

o

rJo(u1)Jo(u2) dr = [mj3/2rJo(u2)Jo′(u1)]
a

o
− [mj1/2rJo(u1)Jo′(u2)]

a

o

This equation agrees essentially with Werner p. 207, for v=0, r = x.



Bibliography

[1] Raven M. S. Experimental measurements of the skin effect and
internal inductance at low frequencies, Acta Technica, vol. 60; 2015.
pp. 51–69.

[2] Skin Effect ― https://en.wikipedia.org/wiki/Skin_effect
[3] Maxwell J. C. Treatise on Electricity and Magnetism Vol. 2. Oxford

University Press, Oxford; 1892.
[4] Penrose R. The Road to Reality. Vintage Books, London; 2004, p.

441.
[5] Einstein A. Relativity-the Special and General Theory. 14th Edn.

London: Methuen; 1968, pp. 41, 49.
[6] Arfken G. Mathematical Methods for Physicists, New York:

Academic Press; 1970.
[7] Raven M. S. Measuring low impedance and skin effect with a gain-

phase meter, Acta Technica, vol. 59; 2014. pp. 303–320.
[8] Hampshire D. P. A derivation of Maxwell's equations using the

Heaviside notation. Philosophical Transactions of the Royal Society
A; 2018. https://doi.org/10.1098/rsta.2017.0447

[9] Mazur V. Principles of Lightning Physics, IOP Expanding Physics,
Institute of Physics, UK; 2016, pp. 2054–7315.
https://en.wikipedia.org/wiki/Lightning
https://www.nssl.noaa.gov/education/svrwx101/lightning/

[10] Faria J. A. Electromagnetic Foundations of Electrical Engineering.
Wiley-Interscience New York; 2008, p. 345.

[11] Audience Wave. https://en.wikipedia.org/wiki/Wave(audience).
[12] Landau L. D., Lifshitz, E. M., and Pitaeskii, L. P. Electrodynamics of

Continuous Media, 2nd Edn. Butterworth Heinemann, London;

https://en.wikipedia.org/wiki/Skin_effect
https://doi.org/10.1098/rsta.2017.0447
https://en.wikipedia.org/wiki/Lightning
https://www.nssl.noaa.gov/education/svrwx101/lightning/
https://en.wikipedia.org/wiki/Wave(audience)


1996.
[13] Edwards J. and Saha T. K. Diffusion of Current into Conductors;

2001, pp. 401–406, AUPEC 01, Perth.
[14] BGR. Bundesanstalt für Geowissenschaften und Rohstoffe –

Electromagnetics – Transient electromagnetics (TEM) 26 April
2019.
https://www.bgr.bund.de/EN/Themen/GGGeophysik/Bodengeophysi
k/TransientenEM/teminhalten.htmlnn=1558406 Also see
https://en.wikipedia.org/wiki/Transient-electromagnetics

[15] Crotti G., Giordano D., Roccato P., et al., Pantograph-to-OHL Arc:
Conducted Effects in DC Railway Supply System, IEEE
Transactions on Instrumentation and Measurement, vol. 68, no. 10;
2019, pp. 3861–3870. https://doi.org/10.1109/TIM.2019.2902805

[16] Goossens M., Mittelbach F., and Samarin A. The Latex Companion.
Addison-Wesley, Reading, MA; 1994, p. 183.

[17] Christopoulos C. The Transmission Line Modelling Method-TLM, 1st
Edn. IEEE Press, New York; 1995.

[18] Maxwell, J. C. A Dynamical Theory of the Electromagnetic Field,
Philosophical Transactions of the Royal Society of London, vol. 155;
1865, p. 49.

[19] Kenyon I. R. The Light Fantastic, 2nd Edn. Oxford University Press,
Oxford; 2011, p. 7.

[20] Parton, J. E., Owen, S. J. T., and Raven, M. S. Applied
Electromagnetics, 2nd Edn. Springer, Berlin; 1986.

[21] Wang Z. L. General solutions of the Maxwell's equations for a
mechano-driven media system (MEs-f-MDMS), Journal of Physics
Communication, vol. 8; 2024, p. 115004.
https://doi.org/10.1088/2399-6528/ad8d2f

[22] Reitz J. R., Milford F. J., and Christy R. W. Foundations of
Electromagnetic Theory, 3rd Edn. Addison-Wesley, Reading, MA;
1979 [see also Wikipedia – Gauge Fixing].

[23] Crank J. The Mathematics of Diffusion. Clarendon Press, Oxford;
1975.

[24] Maxwell, J. C. A Dynamical Theory of the Electromagnetic Field,
Philosophical Transactions of the Royal Society of London, vol. 155;
1865, pp. 450–512.

https://www.bgr.bund.de/EN/Themen/GGGeophysik/Bodengeophysik/TransientenEM/teminhalten.htmlnn=1558406
https://en.wikipedia.org/wiki/Transient-electromagnetics
https://doi.org/10.1109/TIM.2019.2902805
https://doi.org/10.1088/2399-6528/ad8d2f


[25] Bureau International des Poids at Mesures (BIPM) SI Brochure, 9th
Edn. 2019. https://www.bipm.org/en/publications/si-brochure/ [also
see ‘A concise summary of the International System of Units’, SI-
Brochure-9-concise-EN.pdf].

[26] Rosa, E. B. Philosophical Magazine, (Ser 5) vol. 28; 1889, p. 315.
[27] Parton J. E. Electrical Networks, pp. 1.13–1.15, 1974. Text book

(unpublished) based on a course of about twenty lectures given to
2nd Year students, Dept. Electrical and Electronic Engineering,
University of Nottingham, UK.

[28] Poynting, J. H. On the transfer of energy in the electromagnetic field,
Philosophical Transactions of the Royal Society A, vol. 175; 1884, p.
343–361.

[29] Poynting J. H. The Pressure of Light. The Inquirer; 1903, pp. 195–
196 (Google Scholar).

[30] Loudon R. and Baxter C. Contributions of John Henry Poynting to
the understanding of radiation pressure, Philosophical Transactions
of the Royal Society A, 2011, p. 468.
http://doi.org/10.1098/rspa.2011.0573

[31] Dufresne J.-L. La détermination de la constante solaire par Claude
Matthias Pouillet, La Météorologie, vol. 60; 2008, pp. 36–43.

[32] Akpootu D. O. and Gana N. N. Evaluation of solar constant using
locally fabricated aluminium cylinder, Advances in Applied Science
Research, vol. 4, no. 5; 2013, pp. 401–408. Available online at
www.pelagiaresearchlibrary.com

[33] Kopp G. and Lean J. L. A new, lower value of total solar irradiance:
Evidence and climate significance, Geophysical Research Letters,
vol. 38, 2011, p. L01706, http://doi.org/10.1029/2010GL045777

[34] Plonsey R. and Collin R. E. Principles and Applications of
Electromagnetic Fields. McGraw-Hill, New York; 1961, pp. 310,
321, 326.

[35] Raven M. S. Skin effect in the time and frequency domain –
comparison of power series and Bessel function solutions, Journal of
Physics Communication, vol. 2; 2018, p. 035028.
https://doi.org/10.1088/2399-6528/aab4a8

[36] Raven M. S. Maxwell's vector potential method, transient currents
and the skin effect, Acta Technology, vol. 58; 2013, pp. 337–350.

https://www.bipm.org/en/publications/si-brochure/
https://doi.org/10.1098/rspa.2011.0573
http://www.pelagiaresearchlibrary.com/
https://doi.org/10.1029/2010GL045777
https://doi.org/10.1088/2399-6528/aab4a8


[37] Faria J. A. and Raven M. S. On the success of electromagnetic
analytical approaches to full time-domain formulation of skin effect
phenomena, Progress In Electromagnetics Research PIER M, vol.
31; 2013, pp. 29–43.

[38] Ramo S., Whinnery J. R., and Van Duzer T. Fields and Waves in
Communication Electronics, 2nd Edn. Wiley, New York; 1984.

[39] Coufal O. Current density in two parallel cylindrical conductors and
their inductance, Electrical Engineering, vol. 99; 2017, pp. 519–523.

[40] Faria J. A. Comments on ‘Current density in two parallel cylindrical
conductors and their inductance’, Electrical Engineering, vol. 100,
2018, pp. 1535–1536. https://doi.org/10.1007/s00202-017-0633-0

[41] Chambers R. G. Elelectrons in Metals and Semiconductors.
Chapman and Hall, 1990, p. 28, Classical Electromagnetic
Radiation, Academic Press, New York, p. 104(1965).

[42] CODATA Recommended Values of the Fundamental Physical
Constants, 2002, Reviews of Modern Physics, vol. 77; 2005, pp. 1–
107 (Institute of Physics Diary, 2008).

[43] Plonsey R. and Collin R. E. Principles and Applications of
Electromagnetic Fields, McGrawHill, New York; 1961, pp. 325, 328.

[44] Campbell D. S. and Hayes J. A. Capacitive and Resistaive Electronic
Components. Gordon and Breach, Yverdon-Switzerland; 1994, p.
317.

[45] Terman F. E. Radio Engineers’ Handbook. McGraw-Hill, New York;
1943, p. 48.

[46] Combes P. F. Microwave Components, Devices and Active Circuits.
John Wiley & Sons; 1987, p. 28.

[47] Reitz J. R., Milford F.J., and Christy R.W., Foundations of EM
Theory, 3rd Edn. Adison-Wesley, 1979, pp. 243–245.

[48] Bleaney B. I. and Bleaney B. Electricity and Magnetism. Oxford
University Press, Oxford; 1965, p. 494.

[49] Kaye G. W. C. and Laby T. H. Tables of Physical and Chemical
Constants. Longman, Harlow UK; 1989, p. 136.

[50] Williamson I. A. D., Nguyen T. N., Wang Z. Suppresion of the skin
effect in radio frequency transmission lines via gridded conductor
fibers, Applied Physics Letters, vol. 108, no. 8; 2016, p. 083502.
https://doi.org/10.1063/1.4942649

https://doi.org/10.1007/s00202-017-0633-0
https://doi.org/10.1063/1.4942649


[51] London F. and London H. The electromagnetic equations of the
supraconductor, Proceedings of the Royal Society (London), vol.
A149; 1935, pp. 71–88.

[52] Gorter C. J. and Casimir H. On supraconductivity I. Physica, vol. 1;
1934, pp. 306–320

[53] Ginzburg V. L. and LandauL. D. Zh. Eksp. Teor. Fiz., vol 20; 1950,
pp. 1064–1082. (Collected papers of L. D. Landau, ed D.ter Haar,
Gordon and Breach 1967, No. 3)

[54] Bardeen J., Cooper L. N., and Schrieffer J. R. Microscopic theory of
superconductivity, Physical Review, vol. 108; 1957, pp. 162–164.

[55] Bednorz J. G. and Muller K. A. Possible high Tc superconductivity
in the Ba-La-Cu-O system. Z. Phys, B, vol. 64; 1986, p. 189.

[56] Buzea C. and Robbie K. Superconductor Science and Technology,
vol. 18; 2005, pp. R1–R8.

[57] Poynting J. H., Philosophical Transactions A, vol. 175; 1884, p. 343.
[58] Zhou S. Electrodynamics Theory of Superconductors. Peter

Peregrinus Ltd., London; 1991, p. 45.
[59] Duffin W. J. Electricity and Magnetism. McGraw-Hill, London;

1990, p. 355.
[60] Corbin J. C. Skin effect, Skin Effect in The Encyclopedia of Physics,

3rd Edn. Ed Robert M. Besancon, Van Nostrand Reinhold, New
York; 1990, p. 1119.

[61] Starling S. G. and Woodall A. J. Electricity and Magnetism for
Degree Students, 8th Edn. Longmans, London; 1953, p. 364.

[62] Lord Rayleigh (John William Strutt), On the self-induction and
resistance of straight conductors, Philosophical Magazine (Ser 5)
vol. 21; 1886, p. 381.

[63] Fleming J. A. Proceedings of the Physical Society of London, vol.
28; 1911, p. 103. Also see: A Note on the Experimental
Measurement of the High-Frequency Resistance of Wires J A
Fleming, Proceedings of the Physical Society of London, vol. 23;
1910, pp. 103–116. https://doi.org/10.1088/1478-7814/23/1/311
Quantitative Measurements in Connection with Radio-Telegraphy,
JIEE, XLIV, 349

[64] MacDougal J. W. An experiment on skin effect, American Journal of
Physics, vol. 44; 1976, p. 978.

https://doi.org/10.1088/1478-7814/23/1/311


[65] Kennelly A. E. and Affel H. A. Skin effect resistance measurements
of conductors at radio frequencies up to 100,000 cycles per second,
Proceedings of the I.R.E., Vol. 58; 1916, pp. 523–574.

[66] Faria J. A. and Raven M. S. On the success of electromagnetic
analytical approaches to full time-domain formulation of skin effect
phenomena, Progress in Electromagnetics Research PIER M, vol.
31; 2013, pp. 29–43.

[67] Smith G. S. A simple derivation for the skin effect in a round wire,
European Journal of Physics, vol. 35; 2014, pp. 1–13.

[68] Riba J-R. Calculation of the ac to dc resistance ratio of conductive
nonmagnetic straight conductors by applying FEM simulations,
European Journal of Physics, vol. 36; 2015, pp. 1–10.

[69] Starling S. G. and Woodall A. J. Electricity and Magnetism.
Longmans and Co, London; 1956, p. 365.

[70] Kraus J. D. Electromagnetics. McGraw-Hill, New York; 1992.
[71] Silvester P. P. and Ferrari R. L. Finite Elements for Electrical

Engineers. Cambridge University Press, Cambridge; 1983.
[72] Chambers R. G., Electrons in Metals and Semiconductors. Chapman

and Hall, London; 1990, p. 161.
[73] Pozer D. M. Microwave Engineering. Adison-Wesley, New York;

1990.
[74] Astbury N. F. Electrical Applied Physics. Chapman and Hall,

London; 1956.
[75] Assis A. K. T. and Hernandes J. A. The Electric Force of a Current.

Aperion, Montreal; 2007, p. 66.
[76] Werner Rosenheinrich Tables of some indefinite integrals of Bessel

functions, Ernst Abbe Hochschule, Jena; 2015 (19.09.2015, First
variant: 24.09.2003) University of Applied Sciences, Germany;
2003, pp. 207, 217.

[77] Raven M. S. Skin effect in the time and frequency domain –
comparison of power series and Bessel function solutions, Journal of
Physics Communications, vol. 2, no. 3; 2018, p. 035028.
https://doi.org/10.1088/2399-6528/aab4a8

[78] Marion J. B. and Heald M. A. Classical Electromagnetic Radiation.
Academic Press, London; 1965, p. 83.

[79] Croxton C. A. Introductory Eigenphysics. John Wiley, London;
1974, p. 242.

https://doi.org/10.1088/2399-6528/aab4a8


[80] Gormory F. Characteristics of high temperature superconductors by
ac susceptibility measurements, Superconductor Science and
Technology vol. 10; 1997, p. 523.

[81] Couach M. and Khoder A. F. Magnetic Susceptibiity of
Superconductors and other Spin Systems, Hein R. A. et al., (Editors)
Plenum, New York; 1991, p. 25.

[82] Raven M. S. and Salim M. Design aspects of a differential magnetic
susceptometer for high temperature superconductors, Measurement
Science and Technology vol. 12; 2001, pp. 744–754.

[83] Duffin W. J. Electricity and Magnetism. McGraw-Hill, London;
1990, p. 240, Problem 9.9.

[84] Salim M. The AC Magnetic Susceptibility of High temperature
Superconductors, PhD Thesis, The University of Nottingham; 2001.

[85] Gueffaf A. Paraconductivity and Excess Hall Effect of YBCO Thin
Films, PhD Thesis, The University of Nottingham; 2001.

[86] Raven M. S. Thin Film CouplingCoupling2.doc; 2007
(Unpublished).

[87] www.Leonardo-energy.org
[88] Smythe W. R. Static and Dynamic Electricity, 2nd Edn. McGraw-

Hill, New York; 1950.
[89] King D. W. Practical continuous functions for the internal impedance

of solid cylindrical conductors; 2012. http://www.g3ynh.info/
[90] Payne A. https://www.researchgate.net/publication/351312897-THE-

AC-RESISTANCE-AND-INDUCTANCE-OF-RAILS; 2021.
[91] Raven M. S. Experimental measurements of the skin effect and

internal inductance at low frequencies. Acta Technica, vol. 60; 2015,
pp. 51–69.

[92] Pozar D. M. Microwave Engineering. Addison-Wesley, New York;
1990.

[93] Kanthal Handbook, p. 15, Sandvik, www.Kanthal.com
[94] Raven M. S. Axial Impedance of Cylindrical Conductors – V/I

approach.
[95] Raven M. S. Skin effect in the time and frequency domain –

comparison of power series and Bessel function solutions, Journal of
Physics Communications, vol. 2; 2018, p. 035028.
https://doi.org/10.1088/2399-6528/aab4a8

http://www.leonardo-energy.org/
http://www.g3ynh.info/
https://www.researchgate.net/publication/351312897-THE-AC-RESISTANCE-AND-INDUCTANCE-OF-RAILS
http://www.kanthal.com/
https://doi.org/10.1088/2399-6528/aab4a8


[96] The copper wire used for the electrical measurements was standard
electrical wire used in house wiring. The main grade of copper used
for electrical applications is electrolytic-tough pitch (ETP) copper
(CW004A or ASTM designation C11040). This copper is at least
99.90% pure and has an electrical conductivity of at least 101%
IACS. UK std BS 6722:1986.
https://web.archive.org/web/20130523163147/, http://www.ndt-
ed.org/GeneralResources/IACS/IACS.htm, https://www.copper.org/,
https://en.wikipedia.org/wiki/Copper-conductor

[97] Aluminium: Kaye G. N. C. and Laby T. L. (Editors). Tables of
Physical and Chemical Constants, 15th Edn. Longman Scientific and
Technical; 1989, p. 178. Lide D. R. (Editor), CRC Handbook of
Chemistry and Physics, 82nd Edn. CRC Press; 2001–2002, pp. 12–
45. Tennent R. M. (Editor). Science Data Book. Open University,
Oliver and Boyd; 1974, p. 60. Wikipedia
https://en.wikipedia.org/wiki/Aluminium

[98] Raven M. S. Skin effect in the time and frequency domain –
comparison of power series and Bessel function solutions, Journal of
Physics Communications, vol. 2; 2018, p. 035028
https://doi.org/10.1088/2399-6528/aab4a8

[99] Dampier W. C. A History of Science. Cambridge University Press,
Cambridge; 1966, p. 42.

[100] Aurubis, Cu-DPH Material datasheet, EN-2024-06,
aurubis.com/stolberg

[101] Substations - Wikipedia.htm
[102] https://www.totalconnections2009.co.uk/article/copper-tube-busbars/
[103] https://en.wikipedia.org/wiki/Hayes-substation-fire
[104] Raven M. S. Measuring low impedance and skin effect with a gain-

phase meter, Acta Technica, vol. 9; 2014, pp. 303–320.
[105] Raven M. S. Impedance and Skin Effect Measurements for a Large

Regular Planar Copper Wire Meander, Acta Technica, vol. 61; 2016,
pp. 91–105.

[106] Upadhye A. and El-Sharkawi M. Cable-Properties: Computation of
Cable Properties and ATP Simulations.

[107] Crank J. The Mathematics of Diffusion, 2nd Edn. Clarendon Press,
Oxford; 1975.

https://web.archive.org/web/20130523163147/
http://www.ndt-ed.org/GeneralResources/IACS/IACS.htm
https://www.copper.org/
https://en.wikipedia.org/wiki/Copper-conductor
https://en.wikipedia.org/wiki/Aluminium
https://doi.org/10.1088/2399-6528/aab4a8
https://www.totalconnections2009.co.uk/article/copper-tube-busbars/
https://en.wikipedia.org/wiki/Hayes-substation-fire


[108] Hayt W. H. Engineering Electromagnetics, 4th Edn. McGraw-Hill,
New York; 1981.

[109] WWW.ACAsolutions.com or 1.800.866.7385.
[110] Kraus J. D. Electromagnetics, 4th Edn. McGraw Hill, New York;

1991.
[111] Kvitkovic J., Pamidi S., and Voccio J. Shielding AC magnetic fields

using commercial YBa2Cu3O7-coated conductor tapes,
Superconductor Science and Technology, vol. 22; 2009.

[112] Zheng Z. and Zhang R. Metal detecting sensor based on linear hall
effect elements, Applied Mechanics and Materials, vols. 530–531;
2014, pp. 83–90.

[113] Spegel-Lexne D., Gómez S., Argillander J., Pawlowski M., and
Xavier G. B., Experimental demonstration of the equivalence of
entropic uncertainty with wave-particle duality, Science Advances,
vol. 10, no. 49; 2024. https://doi.org/10.1126/sciadv.adr2007

[114] Barnett S. M. The quantum optics of media, Philosophical
Transactions of the Royal Society A; 2024, p. 382.
https://doi.org/10.1098/rsta.2023.0339

[115] Faria J. A. Skin effect in inhomogeneous Euler-Cauchy tubular
conductors, Progress in Electromagnetics Research M, vol. 18;
2011, pp. 89–101.

[116] Raymond Calvert R. The Transformer Ratio-Arm Bridge. Wayne
Kerr Monograph No. 1.

[117] Rogal B. Recent advances in three-terminal bridge techniques,
Proceedings of the Institution of Electronics vol. 4, no. 2; The
Institution of Electronics, London; 1961, pp. 8–14.

[118] Impedance Measurement Handbook - Keysight www.keysight.com
[119] Prabhakaran S. and Sullivan C. R.: Impedance-Analyzer

Measurement of High-Frequency Power Passives: Techniques for
High Power and Low Impedance, IEEE Industry Applications
Society Annual Meeting; 2002. p. 1360–1367.

[120] Raven M. S. Measuring low impedance and skin effect with a gain-
phase meter, Acta Technica, vol. 59; 2014. pp. 303–320.

[121] Li N., Xu H., Wang W., Zhou Z., Qiao G. and D-U Li D. A high-
speed bioelectrical impedance spectroscopy system based on the
digital auto-balancing bridge method, Measurement Science and
Technology, vol. 24; 2013, pp. 1–12.

http://www.acasolutions.com/or1.800.866.7385
https://doi.org/10.1126/sciadv.adr2007
https://doi.org/10.1098/rsta.2023.0339
http://www.keysight.com/


[122] Tomasz Piasecki. Fast impedance measurements at very low
frequencies using curve fitting algorithms, Measurement Science
and Technology, vol. 26; 2015, pp. 1–9.

[123] Angrisani L., Baccigalupi A. and Pietrosanto A. A digital signal-
processing instrument for impedance measurement, IEEE
Transactions on Instrumentation and Measurement, vol. 45; 1996,
pp. 930–934.

[124] Gaydecki P., Miller G., Zaid M. and Fernandes B. Detection of
magnetic fields highly attenuated by the skin effect through a ferrous
steel boundary using a super narrow-band digital filter, IEEE
Transactions on Instrumentation and Measurement, vol. 57; 2008,
pp. 1171–1176.

[125] Sun S., Xu L., Cao Z., Zhou H. and Yang W. A high-speed electrical
impedance measurement circuit based on information-filtering
demodulation, Measurement Science and Technology, vol. 25; 2014,
pp. 1–10.

[126] Dumbrava V. and Svilainis L. The automated complex impedance
measurement system, Electronics and Electrical Engineering, vol. 4,
no. 76; 2007, pp. 59–62.

[127] Janeiro F.M. and Ramos P.M. Impedance measurements using
genetic algorithms and multiharmonic signals, IEEE Transactions on
Instrumentation and Measurement, vol. 58; 2009, p. 383.

[128] Sanchez B., Vandersteen G., Bragos R. and Schoukens J. Basics of
broadband impedance spectroscopy measurements using periodic
excitations, Measurement Science and Technology, vol. 23; 2012.

[129] Lewis Jr G. K., Lewis Sr G. K. and Olbricht W. Cost-effective
broad-band electrical impedance spectroscopy measurement circuit
and signal analysis for piezo-materials and ultrasound transducers,
Measurement Science and Technology, vol. 19; 2008, pp. 102–105.

[130] Muciek A. and Cabiati F. Analysis of a three-voltmeter measurement
method designed for low-frequency impedance comparisons,
Metrology and Measurement Systems, vol. 13; 2006, pp. 19–33.

[131] Callegaro L., Galzerano G. and Svelto C. Precision impedance
measurements by the three-voltage method with a novel high-
stability multiphase DDS generator, IEEE Transactions on
Instrumentation and Measurement, vol. 52; 2003, pp. 1195–1199.



[132] Abraham M. and Rajasekaran K. Implementation of bioimpedance
instrument Kit in ARM7, International Journal of Advanced
Research in Computer Science and Software Engineering, vol. 3;
2013, pp. 1271–1273.

[133] Cowles J. and Gilbert B. Accurate gain/phase measurement at radio
frequencies up to 2.5 GHz, Analog Dialogue, vol. 35; 2001, pp. 5–8.

[134] Copper Development Association High Conductivity Copper for
Electrical Engineering, copperalliance.org.uk/docs; 1998.

[135] Ducluzaux A. Extra losses caused in high current conductors by skin
and proximity effects, Cahier Technique Schneider Electric, no. 83;
1983. http://www.schneider-electric.com

http://www.schneider-electric.com/


Index

a.c. resistance, ohmic loss and102–3
AC test of coil 2 and Hall sensor 174
admittance analysis 162–3
Ampere's Law 80
Anomalous Skin Effect 63
Archimedes principle 148–9
average axial impedance 77
average current density 74, 160–1
average impedance and permeability 135
average internal impedance 161–2
average magnetic field and permeability 162, 169–70
average permeability 120

approximations 122–3
complex permeability 121
current density and electric field 123–4
current density Kelvin functions 124–5
normal and superconducting cylinders 122

average wave impedance 134
axial AC magnetic field 117

average permeability 120
approximations 122–3
complex permeability 121
current density and electric field 123–4
current density Kelvin functions 124–5
normal and superconducting cylinders 122

induced voltage 126



from electric field 127–9
magnetic field penetration 117

flux density complex components 118–20
total current 125–6

axial dc measurements 145–9
axial impedance 75

average 77
internal impedance term 76–7
and Kelvin functions 77–8

axial magnetic fields, cylindrical conductors in 131
conducting-superconducting mixed state 135

impedance from E/H 135–8
superconductor with mutual coupling 138–40
resistivity measurements 141
susceptibility measurements 141–4

impedance from V/I 131
low-frequency approximations 132–3

theoretical results 140–1
wave impedance 133

average impedance and permeability 135
average wave impedance 134
power dissipation 135

axial sinusoidal B field applied to copper tube T4 176
azimuthal impedance 170

Bessel function 13–14, 72, 105, 122, 126, 132, 155–6, 159, 166, 187–8
properties of 189–90

Bessel function integrals 161
Bessel's modified equation 187

Kelvin functions 188–9

coaxial transmission line 97–8
complex permeability 121
complex Poynting vector 54–6
complex voltage and current 57

alternative analysis 58
impedance 58–9



conducting-superconducting mixed state 135
impedance from E/H 135–8
superconductor with mutual coupling 138–40

conductors 12–13
impedance of 83–4
with loss 35–6

copper tube, magnetic field penetration into 171
field errors 178–80
field transmission and screening factor 177–8
magnetic field coil details 173

AC test of coil 2 and Hall sensor: no copper tube 174
axial sinusoidal B field applied to copper tube T4 176
coil temperature 173
DC test of coil 2 and Hall sensor 173–4
inductor magnetic field sensor 175–6

MATLAB® program for transmission coefficient 180
current amplitude 101, 158–9

low-frequency approximation 101–2
current density 81, 155, 168

and electric field 123–4
impedance 169
Kelvin functions 124–5
sine waves 155–7
wave impedance 158

Cu tube resistivity, density and 145–9
cylindrical conductors 69, 95, 117

average permeability 120
approximations 122–3
complex permeability 121
current density and electric field 123–4
current density Kelvin functions 124–5
normal and superconducting cylinders 122

axial impedance 75
average axial impedance 77
axial impedance and Kelvin functions 77–8
internal impedance term 76–7

current amplitude 101



low-frequency approximation 101–2
current density 71

average current density 74
Kelvin equations 74–5
sine waves 72–3

electric field from Maxwell's equations 70
experimental measurements 107–8
external magnetic field 80
graphical results for 81

current density 81
impedance of conductor 83–4
magnetic flux density 85–6
MATLAB® programs 87
power dissipation 85
surface current density 81–3

induced magnetic field 78–9
induced voltage 126

from electric field 127–9
internal inductance and resistance, frequency response of 103

high-frequency approximation 105–7
low-frequency approximation 105

internal inductance-energy method 98
internal magnetic flux, internal inductance from 113–15

alternative solution 80–1
from Maxwell's equations 70

magnetic field penetration 117
flux density complex components 118–20

ohmic loss and a.c. resistance 102–3
power dissipation in 91

from impedance 93–4
from Poynting theory 91–3

self-inductance, steady state (dc) calculations of 96
coaxial transmission line 97–8
external self-inductance 97
internal self-inductance 96–7
twin-wire transmission line 97

sine waves 71



sinusoidal fields 99
internal energy and inductance 100–1
internal magnetic field 99–100

total current 125–6
cylindrical conductors in axial magnetic fields 131

conducting-superconducting mixed state 135
impedance from E/H 135–8
superconductor with mutual coupling 138–40
resistivity measurements 141
susceptibility measurements 141–4

impedance from V/I 131
low-frequency approximations 132–3

theoretical results 140–1
wave impedance 133

average impedance and permeability 135
average wave impedance 134
power dissipation 135

cylindrical wire 65–6

DC test of coil 2 and Hall sensor 173–4
Debye equations 31–2
de-embedding 186
dielectric with loss 34–5
dissipation factor 29, 37–9

Eddy Currents 62
electrical energy, transient transmission of 2

electromagnetic disturbances-frequency and time domains 3
electric field 32–3

induced voltage from 127–9
from Maxwell's equations 70
frequency and time domains 3
theory of propagation of 4

conductors 6
non-conductors 6

energy in 8
Maxwell on the pressure of sunlight 8–9



radiation pressure and wave-particle duality 9–10
and light 7

Equations of Telegraphy 29, 69
external inductance 96
external magnetic field 80
external self-inductance 97

Faraday's law 15
of electromagnetic induction 96

ferrite materials 22
field errors 178–80
field transmission 162

and screening factor 177–8
flux density complex components 118–20
Fourier analysis 22
free space propagation constants 27–8
frequency domain, power dissipation in 48
frequency response of internal inductance and resistance 103

high-frequency approximation 105–7
low-frequency approximation 105

gain phase meter (GPM) technique 107, 182, 184, 186
de-embedding 186
equivalent circuit 183–6
measurement system and procedures 182–3

Gauss's theorem 51

half-space, conducting 63–5
AC test of coil 2 and 174
DC test of coil 2 and 173–4

Helmholtz Wave Equations 29, 69
Helmholtz's theorem 15
high-frequency approximation 105–7
hollow cylindrical conductor 145, 151, 155, 165

admittance analysis 162–3
average current density 160–1
average internal impedance 161–2



average magnetic field and permeability 162
average magnetic field and permeability 169–70
azimuthal impedance 170
current amplitude 158–9
current density 155, 168

impedance 169
sine waves 155–7
wave impedance 158
Cu tube resistivity, density and –axial dc measurements 145–9
experimental results 151–3
field transmission 162
inductance of a hollow tube and solid cylindrical conductor 149–50
internal impedance 159–60
magnetic field analysis 165–7
power dissipation 170
screening factor 162
tube impedance theory 151
hollow tube and solid cylindrical conductor, inductance of 149–50
impedance 34, 57, 131, 169

conducting-superconducting mixed state 135
impedance from E/H 135–8
superconductor with mutual coupling 138–40

from E/H 135–8
resistivity measurements 141
susceptibility measurements 141–4

power from 93–4
theoretical results 140–1
from V/I 131

low-frequency approximations 132–3
wave impedance 133

average impedance and permeability 135
average wave impedance 134
power dissipation 135

impedance analysis 155
admittance analysis 162–3
average current density 160–1



average internal impedance 161–2
average magnetic field and permeability 162
current amplitude 158–9
current density 155

sine waves 155–7
wave impedance 158

field transmission 162
internal impedance 159–60
screening factor 162

impedance measurement techniques 181
gain phase meter (GPM) technique 182

de-embedding 186
equivalent circuit 183–6
measurement system and procedures 182–3

recent developments 181–2
induced magnetic field 78–9
induced voltage 126

from electric field 127–9
inductance 96

internal inductance-energy method 98
steady state (dc) calculations of self-inductance 96

coaxial transmission line 97–8
external self-inductance 97
internal self-inductance 96–7
twin-wire transmission line 97

inductor magnetic field sensor 175–6
internal energy and inductance 100–1
internal impedance 76–7, 159–60
internal inductance 96
internal inductance and resistance, frequency response of 103

high-frequency approximation 105–7
low-frequency approximation 105

internal inductance-energy method 98
internal magnetic field 99–100
internal magnetic flux, internal inductance from 113–15
internal self-inductance 96–7
isotropic materials 22



Kelvin equations 74–5, 118, 124, 188–9
Kelvin functions, axial impedance and 77–8

LCR circuit, power dissipation in 59
Lenz's law 62
London theory 53
London's First Equation 53
Lorentz condition (gauge) 10

Bessel functions, solution using 13–14
conductors 12–13
non-conductors 12

low-frequency approximation 105

magnetic field 32–3, 80–1
analysis 165–7
from Maxwell's equations 70

magnetic field penetration 117
flux density complex components 118–20

magnetic field penetration into copper tube 171
field errors 178–80
field transmission and screening factor 177–8
magnetic field coil details 173

AC test of coil 2 and Hall sensor: no copper tube 174
axial sinusoidal B field applied to copper tube T4 176
coil temperature 173
DC test of coil 2 and Hall sensor 173–4
inductor magnetic field sensor 175–6

MATLAB® program for transmission coefficient 180
magnetic flux density 85–6
MATLAB® programs 87

for transmission coefficient 180
Maxwell's equations, electric and magnetic fields from 69–70
Maxwell's equations, solution of 21

dissipation factor 37–9
in free space 23
lossy medium 28

conductor with loss 35–6



Debye equations 31–2
dielectric with loss 34–5
impedance 34
magnetic and electric fields 32–3
phase velocity 30
refractive index 30–1
surface resistivity 36–7
TEM waves 32

quasi-static conditions 39
complex µ and ? 42–3
equivalent circuit approximations 40–2
impedance 42
mutual coupling effect 43–4
normal state with complex µ and ? 44

wave motion in free space 23
free space propagation constants 27–8
plane wave with two components 27
relationship between E and H fields –TEM waves 25–7
sinusoidal and non-sinusoidal waves 25
travelling waves 24–5

Maxwell's general equations of electromagnetic disturbances 1
electromagnetic waves and light 7
energy in electromagnetic waves 8

radiation pressure and wave-particle duality 9–10
sunlight, Maxwell on the pressure of 8–9

Lorentz condition (gauge) 10
Bessel functions, solution using 13–14
conductors 12–13
non-conductors 12

theory of propagation of electromagnetic disturbances 4
conductors 6
non-conductors 6

time dependent electromagnetic field, final equations for 14
transient transmission of electrical energy 2

electromagnetic disturbances-frequency and time domains 3
mutual coupling 43

superconductor with 138–40



non-conductors 12
non-sinusoidal waves 25
normal and superconducting cylinders 122

ohmic loss and a.c. resistance 102–3

phase velocity 30
plane wave 26

with two components 27
polarised wave 26
polycrystalline metals 22
power dissipation 85, 135, 170

in cylindrical conductor 91
from impedance 93–4
from Poynting theory 91–3

in frequency domain 48
instantaneous power 48–50
in LCR circuit 59
in time domain 47–8

power flow 50
complex Poynting vector 54–6
Poynting's theorem 52–3
relaxation dependence 56–7
superconductivity 53–4

power integral 190–2
Poynting theory, power from 91–3
Poynting vector 8, 51
Poynting's theorem 51

alternative derivation 52–3
complex Poynting vector 54–6

printed circuit boards (PCBs) 68

quasi-static (qs) approximation 39
quasi-static conditions 39

complex µ and ? 42–3
equivalent circuit approximations 40–2
impedance 42



mutual coupling effect 43–4
normal state with complex µ and ? 44

radiation pressure and wave-particle duality 9–10
rectangular conductor 66
refractive index 30–1
relaxation dependence 56–7
resistivity measurements 141

screening factor 162
self-inductance 96

steady state (dc) calculations of 96
coaxial transmission line 97–8
external self-inductance 97
internal self-inductance 96–7
twin-wire transmission line 97

semiconductor crystals 22
sine waves 71–3, 155–7
sinusoidal and non-sinusoidal waves 25
sinusoidal fields 99

internal energy and inductance 100–1
internal magnetic field 99–100

skin effect 61
approximate methods 65

cylindrical wire 65–6
rectangular conductor 66
tubular conductor 67

general description of 62–3
half-space, conducting 63–5
history 61–2
methods of reducing 68

steady state (dc) calculations of self-inductance 96
coaxial transmission line 97–8
external self-inductance 97
internal self-inductance 96–7
twin-wire transmission line 97

steady state d.c. power dissipation 47



superconductivity 53–4
superconductor with mutual coupling 138–40
surface current density 81–3
surface resistivity 36–7
susceptibility measurements 141–4

TEM waves 25–7, 32
theory of propagation of electromagnetic disturbances 4

conductors 6
non-conductors 6

threshold frequency 95
time dependent electromagnetic field, final equations for 14
time domain, power dissipation in 47–8
total current 125–6
transient transmission of electrical energy 2

electromagnetic disturbances-frequency and time domains 3
transmission coefficient, MATLAB program for 180
transverse electromagnetic (TEM) wave 26, 63
transverse magnetic (TM) wave 26
tranverse electric (TE) wave 26
tube impedance theory 151
tubular conductor 67
twin-wire transmission line 97
water displacement, measurement of sample volume by 148–9

wave impedance 133, 158
average 134
average impedance and permeability 135
power dissipation 135

wave motion in free space 23
free space propagation constants 27–8
plane wave with two components 27
relationship between E and H fields –TEM waves 25–7
sinusoidal and non-sinusoidal waves 25
travelling waves 24–5

wave-particle duality, radiation pressure and 9–10


	Title
	Contents
	Preface
	About the author
	Chapter 1 Maxwell's general equations of electromagnetic disturbances
	1.1 Introduction
	1.2 Basics of the transient transmission of electrical energy
	1.2.1 Electromagnetic disturbances-frequency and time domains

	1.3 Theory of the propagation of electromagnetic disturbances – Maxwell's approach
	1.3.1 Conductors
	1.3.2 Non-conductors

	1.4 Electromagnetic waves and light
	1.5 Energy in electromagnetic waves – radiation pressure
	1.5.1 Maxwell on the pressure of sunlight
	1.5.2 Radiation pressure and wave-particle duality

	1.6 Alternative derivation – the Lorentz condition (gauge)
	1.6.1 Non-conductors
	1.6.2 Conductors
	1.6.3 Solution using Bessel functions

	1.7 Final equations for the time dependent electromagnetic field
	1.8 Summary and discussion
	1.9 Appendix
	1.9.1 Proof of (1.3)
	1.9.2 Proof of (1.5)
	1.9.3 Proof of the SI equation (1.5)
	1.9.4 Alternative derivation of (1.29)
	1.9.5 The continuity equation
	1.9.6 Proof that the Lorenz condition leads to the continuity equation
	1.9.7 Proof of (1.37)

	1.10 Table of Euler Fraktur fonts

	Chapter 2 Solution of Maxwell's equations in loss free and lossy media
	2.1 Introduction
	2.2 Solution of Maxwell's equations in free space
	2.3 Wave Motion in free space
	2.3.1 Travelling waves
	2.3.2 Sinusoidal and non-sinusoidal waves
	2.3.3 Relationship between E and H fields – TEM waves
	2.3.3.1 TEM waves – example

	2.3.4 Plane wave with two components
	2.3.5 Free space propagation constants

	2.4 Solution of Maxwell's equations-lossy medium
	2.4.1 Phase velocity
	2.4.2 Refractive index
	2.4.3 Debye equations
	2.4.4 TEM waves
	2.4.5 Magnetic and electric fields
	2.4.6 Impedance
	2.4.7 Summary
	2.4.8 Dielectric with loss
	2.4.9 Conductor with loss
	2.4.10 Surface resistivity

	2.5 Dissipation factor
	2.6 Quasi-static conditions
	2.6.1 Equivalent circuit approximations-lossy conductor and superconductor
	2.6.2 Impedance
	2.6.3 Complex μ and ε
	2.6.4 Mutual coupling effect
	2.6.5 Normal state with complex μ and ε

	2.7 Proof of equation (2.128)

	Chapter 3 Power dissipation and Poynting's theorem
	3.1 Steady state dc power dissipation
	3.2 Power dissipation in the time and frequency domain
	3.2.1 Time domain
	3.2.2 Frequency domain
	3.2.3 Instantaneous power

	3.3 Power Flow-Poynting's theorem
	3.3.1 Poynting's theorem – alternative derivation
	3.3.2 Superconductivity
	3.3.3 Complex Poynting vector
	3.3.4 Relaxation dependence

	3.4 Impedance
	3.5 Complex voltage and current
	3.5.1 Alternative analysis
	3.5.2 Impedance

	3.6 Power dissipation in an LCR circuit

	Chapter 4 The Skin Effect – introduction
	4.1 Introduction
	4.2 Skin Effect – a brief history
	4.3 General description of the Skin Effect
	4.4 Conducting half-space
	4.5 Approximate methods
	4.5.1 Cylindrical wire
	4.5.2 Rectangular conductor
	4.5.3 Tubular conductor

	4.6 Methods of reducing Skin Effect

	Chapter 5 Cylindrical conductor – axial alternating current
	5.1 Introduction
	5.2 The electric and magnetic fields from Maxwell's equations
	5.2.1 Electric field
	5.2.2 Magnetic field

	5.3 Sine waves
	5.4 The current density
	5.4.1 Sine waves
	5.4.2 Average current density
	5.4.3 Kelvin equations

	5.5 Axial impedance
	5.5.1 Internal impedance term
	5.5.2 Average axial impedance
	5.5.3 Axial impedance and Kelvin functions

	5.6 Appendix
	5.6.1 Induced magnetic field
	5.6.2 Alternative expression for Bϕ
	5.6.3 External magnetic field

	5.7 Magnetic field alternative solution
	5.8 Graphical results for cylindrical conductors
	5.8.1 Current density
	5.8.2 Surface current density
	5.8.3 Impedance of conductor
	5.8.4 Power dissipation
	5.8.5 Magnetic flux density
	5.8.6 MATLAB® programmes


	Chapter 6 Power dissipation in a cylindrical conductor
	6.1 Introduction
	6.1.1 Power from Poynting theory
	6.1.2 Power from impedance


	Chapter 7 Inductance and resistance of cylindrical conductors – analysis and experimental measurements
	7.1 Introduction
	7.2 Inductance
	7.2.1 Steady state (dc) calculations of self-inductance
	Internal self-inductance

	7.2.2 Internal inductance-energy method

	7.3 Sinusoidal fields
	7.3.1 Internal magnetic field
	7.3.2 Internal energy and inductance

	7.4 Current amplitude
	7.4.1 Low-frequency approximation

	7.5 Ohmic loss and a.c. resistance
	7.6 Frequency response of internal inductance and resistance
	7.6.1 Low-frequency approximation
	7.6.2 High-frequency approximation

	7.7 Experimental measurements
	7.8 Discussion and summary
	7.9.1 Internal inductance from the internal magnetic flux

	Chapter 8 Cylindrical conductors – axial AC magnetic field
	8.1 Introduction
	8.2 Magnetic field penetration
	8.2.1 Flux density complex components

	8.3 The average permeability
	8.3.1 Complex permeability
	8.3.2 Normal and superconducting cylinders
	8.3.3 Approximations
	8.3.4 Current density and electric field
	8.3.5 Current density Kelvin functions

	8.4 Total current
	8.5 Induced voltage
	8.5.1 Induced voltage from the electric field


	Chapter 9 Cylindrical conductors in axial magnetic fields – impedance
	9.1 Impedance from V/I
	9.1.1 Low-frequency approximations

	9.2 Wave impedance
	9.2.1 Average wave impedance
	9.2.2 Average impedance and permeability
	9.2.3 Power dissipation

	9.3 Conducting-superconducting mixed state
	9.3.1 Impedance from E/H
	9.3.2 Superconductor with mutual coupling

	9.4 Theoretical results
	9.5 Experimental results
	9.5.1 Resistivity measurements
	9.5.2 Susceptibility measurements


	Chapter 10 Hollow cylindrical conductors
	10.1 Introduction
	10.2 Cu tube resistivity, density and – axial dc measurements
	10.2.1 Measurement of sample volume by water displacement – Archimedes principle [99]

	10.3 Inductance of a hollow tube and solid cylindrical conductor

	Chapter 11 Hollow cylindrical conductor – axial AC: experimental measurements
	11.1 Introduction
	11.2 Tube impedance theory
	11.3 Experimental results

	Chapter 12 Hollow cylindrical conductor – impedance analysis
	12.1 Current density
	12.1.1 Sine waves
	12.1.2 Wave impedance

	12.2 Current amplitude
	12.3 Internal impedance
	12.4 Average current density
	12.5 Average internal impedance
	12.6 The average magnetic field and permeability
	12.7 Field transmission and screening factor
	12.8 Admittance analysis

	Chapter 13 Hollow cylindrical conductor – axial B
	13.1 Introduction
	13.2 Magnetic field analysis
	13.3 Current density
	13.3.1 Impedance

	13.4 The average magnetic field and permeability
	13.5 Azimuthal impedance
	13.6 Power dissipation

	Chapter 14 Magnetic field penetration into a copper tube: experimental measurements
	14.1 Introduction
	14.2 Magnetic field coil details
	14.2.1 Coil temperature
	14.2.2 DC Test of Coil 2 and Hall sensor
	14.2.3 AC test of coil 2 and Hall sensor: no copper tube
	14.2.4 Inductor magnetic field sensor
	14.2.5 Axial sinusoidal B field applied to copper tube T4

	14.3 Field transmission and screening factor
	14.4 Field errors
	14.5 MATLAB® program for transmission coefficient, T

	Chapter 15 Impedance measurement techniques
	15.1 Introduction
	15.2 Recent developments
	15.3 GPM technique
	15.3.1 Measurement system and procedures
	15.3.2 Equivalent circuit
	15.3.3 De-embedding


	Appendix
	A.1 Bessel's modified equation
	A.1.1 Kelvin functions

	A.2 Properties of Bessel functions
	A.3 Power integral

	Bibliography
	Index

